Рис. 1
Аналогично определяется прямоугольная (ортогональная) проекция в пространстве: проекция точки M на плоскость p - основание M' перпендикуляра
Рис. 2
Наряду с проекцией на плоскость можно говорить также о проекции на прямую l в пространстве. Ортогональная проекция точки M на прямую l - это точка M' пересечения l с плоскостью, проходящей через M и перпендикулярной l; например, проекция точки (x,y,z) пространства Oxyz на ось Oz - это точка на оси Oz с координатой z, а ее проекция на плоскость Oxy - точка с координатами (x,y). Аналогичная связь имеется между координатами вектора и координатами его проекций.
Прямоугольную проекцию тела на горизонтальную плоскость можно сравнить с его тенью от солнца, находящегося в зените. Если же солнце склоняется к горизонту, тень удлиняется. Эта тень и будет наклонной или параллельной проекцией на горизонтальную плоскость p по направлению α (α - прямая, задающая направление солнечных лучей); проекцией точки M при параллельной проекции по направлению α называется точка пересечения плоскости p с прямой, проходящей через M и параллельной α.
В технических чертежах часто приводят три проекции детали на взаимно ортогональные плоскости Ozy,Oyx,Oxz (рис. 3): вид спереди (анфас), вид сверху (план) и вид сбоку (профиль). Но для большей наглядности рядом помещают еще аксонометрическое изображение детали - ее параллельную проекцию на некоторую «наклонную» плоскость вместе с проекциями на эту плоскость трех осей Ox,Oy,Oz. Конечно, одна аксонометрическая проекция еще не задает формы тела и его расположения по отношению к осям координат, поэтому часто вместе с ней чертят также вторичную проекцию: аксонометрическое изображение одной из проекций тела и основных проецирующих лучей (на рис. 4 показана аксонометрия тела и его проекция на плоскость Oxy).
Рис. 3
Рис. 4
При параллельной проекции, (разумеется, как и при ортогональной) искажаются углы между прямыми, но выполняются такие условия: (1) параллельные прямые переходят в параллельные прямые; (2) сохраняются отношения длин параллельных отрезков (и отрезков одной прямой); (3) площади фигур, расположенных в одной плоскости, уменьшаются в одном и том же отношении. Пользуясь свойствами (1), (2) и зная проекции четырех точек A,B,C,O в пространстве, не лежащих в одной плоскости (или, что то же самое, зная проекции трех непараллельных одной плоскости векторов
Этот факт называется теоремой Польке-Шварца, по именам немецких математиков К. Польке и Г. Шварца, доказавших ее в середине XIX в.
Параллельная проекция плоскости на другую плоскость определяется образами O',A',B' трех точек O,A,B (двух векторов
Но свойства (1)-(3) уже не будут выполняться для центральной проекции. Центральной проекцией точки M с центром S на плоскость p называется точка M' пересечения прямой MS с плоскостью p. С этим видом проекции мы также сталкиваемся на каждом шагу. Тень от лампы, которую отбрасывает предмет на стену (рис. 5), - пример, когда фигура расположена между центром S и плоскостью проекции. Изображение в фотоаппарате (с некоторым приближением) - центральная проекция, центр которой расположен между предметом и плоскостью проекций p (изображение здесь получается перевернутым, рис. 6). Центральная проекция (ее также называют «линейная перспектива») играет большую роль и в изобразительном искусстве: скажем, рисуя на картине тень человека, отбрасываемую на асфальт от уличного фонаря, мы имеем дело с композицией двух центральных проекций: одна проекция человека с центром в лампочке фонаря на плоскость тротуара, вторая - проекция тени с центром в глазу художника на плоскость холста. Тут может спасти от ошибки лишь одно главное свойство центральной проекции: любую прямую она переводит в прямую. Изображением окружности при центральной проекции может быть не только эллипс (как при ортогональной или параллельной проекции), но также парабола или гипербола (рис. 7). Свойства фигур, сохраняющиеся при центральном проектировании, - предмет изучения проективной геометрии.
Рис. 5
Рис. 6
Рис. 7
ПРОПОРЦИЯ
Пропорцией называют равенство отношений двух или нескольких пар чисел или величин. Например, размеры модели машины или сооружения отличаются от размеров оригинала одним и тем же множителем, задающим масштаб модели. Поэтому если выбрать на оригинале четыре точки A,B,C и D и обозначить через A',B',C',D' соответствующие точки на модели, то будет выполняться равенство A'B'/AB = C'D'/CD (оба отношения равны масштабу). Такое равенство двух отношений и будет пропорцией. Справедлива и другая пропорция AB/CD = A'B'/C'D', которая показывает, что отношения расстояний точек оригинала такие же, как и отношения расстояний соответствующих точек модели.
В древности в неявной форме идеей пропорциональности пользовались при решении задач методом ложного положения: давали искомой величине произвольное значение, вычисляли, какое значение должна при этом иметь одна из данных величин, и сравнивали с условием задачи. Отношение величин давало коэффициент, на который надо умножить выбранное значение, чтобы получить правильный ответ.