Выбрать главу
 и среднее гармоническое - число 2ab/(a+b). Эти средние были известны еще античным математикам, они играли большую роль, в частности, в древнегреческой теории музыки. В одном из математических текстов, который приписывают древнегреческому математику Архиту (ок. 428-365 гг. до н.э.), среднее арифметическое m, среднее геометрическое g и среднее гармоническое h определялись как равные средние члены соответственно арифметической, геометрической и гармонической пропорций:

a-m=m-b; a:g=g:b; (a-h):a=(h-b):b.

Из этих равенств легко получаем:

, , .

По преданию гармоническое среднее ввел Пифагор (VI в. до н.э.), выразив с его помощью отношение основных гармонических интервалов. Пифагор установил, что вместе со струной длиной 12l, созвучно сливаясь с ней, звучат струны того же натяжения с длинами 6l (выше на октаву), 8l и 9l (выше на квинту и кварту), при этом 9 есть среднее арифметическое чисел 6 и 12, а 8 он определил как среднее гармоническое этих чисел. Это созвучие (и определяющее его отношение чисел 6, 8, 9, 12) называлось тетрадой. Пифагорейцы считали, что тетрада есть «та гамма, по которой поют сирены».

В древнегреческой математике, которая была по преимуществу геометрической, было известно несколько способов построения средних по двум данным отрезкам a и b. У Паппа Александрийского (III в.) в его «Математическом собрании», своде результатов древнегреческой математики, приведено построение среднего геометрического двух отрезков по способам его предшественников Эратосфена (276-194 гг. до н.э.), Никомеда (II в. до н.э.) и Герона (I в.), дано также описание построения на одной фигуре всех трех средних.

На рис. 1 показано одно из возможных построений. АС и СВ (|АС| = а, |СВ| = b) - смежные отрезки одной прямой, на отрезке АВ как на диаметре построена окружность, радиус этой окружности равен (а + b)/2. В точке С восставлен перпендикуляр к прямой АВ. В прямоугольном треугольнике ANВ (угол ANВ - прямой, он опирается на диаметр) высота NC есть среднее пропорциональное отрезков АС и СВ, т. е. |NC| = v(ab). Если NM - проекция NC на NO, то нетрудно подсчитать, что |NM| = 2ab/(а + b). Так как перпендикуляр короче наклонной, то |NM| < |NC| < |ON|. Если длины отрезков АС и СВ равны, то точки О и С совпадают и совпадают также все рассматриваемые отрезки NM, NC и ON. Таким образом, при любых положительных а и b справедливы неравенства:

,

и в каждом из них знак равенства достигается лишь в случае a=b.

Рис. 1

Неравенство  называется неравенством о среднем арифметическом и среднем геометрическом. Из него следуют две теоремы, которые часто используются при решении задач на наибольшее и наименьшее значения, так называемых задач на экстремум: 1) произведение двух положительных чисел, при постоянной сумме, имеет наибольшее значение, когда числа равны; 2) сумма двух положительных чисел, при постоянном произведении, имеет наименьшее значение, когда числа равны.

Применив эти теоремы, нетрудно, например, установить, что из всех прямоугольников с заданным периметром наибольшую площадь имеет квадрат и из всех прямоугольников с заданной площадью наименьший периметр имеет также квадрат.

Средним арифметическим n положительных чисел a1,a2,...,an называется число

.

Средним геометрическим n положительных чисел a1,a2,...,an называется корень n-й степени из произведения этих чисел:

.

Средним гармоническим n положительных чисел a1,a2,...,an называется число

.

Заметим, что число, обратное среднему гармоническому h, есть среднее арифметическое n чисел, обратных данным:

.

Средним квадратичным n произвольных чисел a1,a2,...,an называется корень квадратный из среднего арифметического квадратов этих чисел:

.

Для любых положительных чисел a1,a2,...,an эти средние удовлетворяют неравенствам:

h ≤ g ≤ m ≤ d,    (1)

в каждом из которых знак равенства достигается лишь в случае, когда a1=a2=...=an.

Самым важным и знаменитым из этих неравенств является неравенство о среднем арифметическом и среднем геометрическом:

.   (2)

Применяя его к числам 1/a1, 1/a2,..., 1/an, можно доказать неравенство h ≤ g, а применяя его к натуральным числам 1, 2,..., n и используя тот факт, что

1 + 2 + ... + n = n(n+1)/2,

получаем неравенство .

Следствиями неравенства о среднем арифметическом и среднем геометрическом будут обобщения теорем 1) и 2) о максимуме произведения и минимуме суммы, на основе которых решаются многие задачи на экстремум: произведение n положительных чисел, при постоянной сумме, принимает наибольшее значение, когда все эти числа равны; сумма n положительных чисел, при постоянном произведении, принимает наименьшее значение, когда все эти числа равны. Обратим внимание, что среднее арифметическое, как и среднее квадратичное, имеет смысл не только для положительных, но и для произвольных чисел a1,a2,...,an, при этом справедливо неравенство m2≤d2. В случае, например, двух слагаемых оно принимает вид

и легко следует из тождественного неравенства (a1 - a2)2 ≥ 0. Неравенства для средних и сами средние широко применяются не только в алгебре, геометрии, математическом анализе, но и в статистике, в теории вероятностей (откуда пришло среднее квадратичное), при обработке результатов измерений.

Все рассмотренные средние являются частными случаями степенных средних: для положительных чисел a1,a2,...,an и отличного от нуля числа α степенным средним порядка α называется число

.

При α = -1,1,2 соответственно получается среднее гармоническое, среднее арифметическое и среднее квадратичное. При α = 0  A(α) не определено, однако можно показать, что при стремлении α к нулю A(α) стремится к среднему геометрическому, и потому можно считать S(0) средним геометрическим. Основное свойство степенных средних - это монотонность: S(α1) ≤ S(α2), если α1 < α2, в частности

S(-1) ≤ S(0) ≤ S(1) ≤ S(2).

Рассмотрим следующую процедуру. По двум положительным числам a и b составим их среднее арифметическое a1 = (a + b)/2 и среднее геометрическое , затем по числам a1 и b1 составим их среднее арифметическое a2 = (a1 + b1)/2 и среднее геометрическое . Продолжим этот процесс, определяя an и bn с помощью формул:

 и .

Образуются две последовательности чисел (an) и (bn). Например, если взяты числа a=1 и b=3, то первые члены последовательностей будут такие:

В приведенном примере последовательности (an) и (bn) очень быстро сближаются. В общем случае, как было показано немецким математиком К. Ф. Гауссом, последовательности (an) и (bn) приближаются друг к другу достаточно быстро и имеют общий предел. Предел этот называется арифметико-геометрическим средним чисел a и b. Он не выражается элементарно через a и b, однако не является и каким-то математическим курьезом, а находит многочисленные применения в ряде разделов математики.