Выбрать главу

Естественно попытаться уточнить, сколько же в точности девяток надо взять, чтобы получилось число, делящееся на p. Оказывается, что всегда годится число, состоящее из p-1 девяток. Однако иногда достаточно и меньшего числа, но всегда это наименьшее число девяток l является делителем p-1. До сих пор не известен ответ на вопрос, волновавший еще Гаусса: конечно или бесконечно число таких p, для которых l=p-1 (так обстоит дело для p=7,17,19,23,47,...).

Утверждение о делимости чисел, составленных из девяток, является частным случаем значительно более общего утверждения, носящего название малой теоремы Ферма: если p - простое число, a - натуральное число, не делящееся на p, то ap-1 при делении на p дает остаток 1 (утверждение о девятках получается при a=10). «Меня озарило ярким светом», - писал Ферма, впервые сообщая об этом своем открытии в письме (1640). В самом деле, эта теорема стала одним из самых фундаментальных фактов в теории делимости натуральных чисел. Ферма не оставил доказательства теоремы, и первое известное доказательство принадлежит Л. Эйлеру. В заключение дадим формулировку этой теоремы, не содержащую ограничений на число a: если p - простое число, a - натуральное число, то ap - a делится на p.

ФЕРМА ТЕОРЕМА

Теорема Ферма - одна из первых теорем дифференциального исчисления, устанавливающая связь между поведением функции и значением ее производной. Пусть функция f(x) определена на интервале ]a;b[ и в некоторой точке x0 этого интервала принимает наибольшее или наименьшее значение; если в этой точке существует производная f'(x0), то она равна нулю: f'(x0) = 0.

Геометрически это означает, что если в самой высокой или самой низкой точке графика функции, рассматриваемого на интервале ]a;b[, существует касательная, то эта касательная параллельна оси Ox.

Теорема носит имя французского математика П. Ферма. Надо отметить, что сам Ферма не знал понятия производной, и теорема представляет уточнение его соображений и метода.

ФИБОНАЧЧИ ЧИСЛА

Имя Леонардо Фибоначчи (Леонардо Пизанского) - крупного итальянского математика, автора «Книги об абаке» (1202), которая несколько веков оставалась основным хранилищем сведений по арифметике и алгебре, сейчас встречается чаще всего в связи с замечательной числовой последовательностью 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, ….

Эта последовательность определяется условиями: u1 = 1, u2 = 1, un+1 = un + un-1 (для каждого натурального u > 1). Ее члены называются числами Фибоначчи. Они возникают в самых разных математических ситуациях - комбинаторных, числовых, геометрических.

Если вы любите отыскивать числовые закономерности в живой природе, то заметите, что эти числа часто встречаются в различных спиральных формах, которыми так богат мир растений; черенки листьев примыкают к стеблю по спирали, которая проходит между двумя соседними листьями: 1/3 полного оборота - у орешника, 2/5 - у дуба, 3/8 - у тополя и груши, 5/13 - у ивы; чешуйки на еловой шишке, ячейки на ананасе и семена подсолнечника расположены спиралями, причем количества спиралей каждого направления также, как правило, числа Фибоначчи.

На рис. 1 числа Фибоначчи выражают длины сторон спиральной последовательности квадратов на клетчатой бумаге. Из этого рисунка нетрудно получить такое равенство: u12 + u22 + u32 + ... + un2 = un un+1 (для любого n). Это и другие любопытные соотношения между числами Фибоначчи, такие, как

u1 + u2 + ... + un = un+2 - 1;

u2n - un-1un+1 = un+2un-1 - unun-1 = (-1)n;

um+k = uk-1um + ukum+1,

можно доказать методом математической индукции.

Рис. 1

Много интересного в арифметике чисел Фибоначчи. Каждое третье число Фибоначчи четно, каждое четвертое делится на три, каждое пятнадцатое оканчивается нулем, и вообще для каждого d числа Фибоначчи, делящиеся на d, встречаются периодически. Два соседних числа Фибоначчи взаимно просты; um делится на un тогда и только тогда, когда m делится на n.

При детальном исследовании свойств делимости чисел Фибоначчи выясняется особая роль числа 5, например: если простое число p имеет вид 5t±2, то up+1 делится на p, а если p имеет вид 5t±1, то up-1 делится на p.

Число 5 участвует и в приведенной ниже формуле Бине (французский ученый Ж. Вине, 1786-1856), выражающей un как функцию от номера n:

.

Из этой формулы следует, что un растет примерно как геометрическая прогрессия со знаменателем

,

точнее, un равно ближайшему целому числу к τn/√5.

Формулу Бине можно доказать по индукции или с помощью производящей функции для последовательности Фибоначчи:

.

Выражение для n-го члена в виде суммы нескольких геометрических прогрессий, аналогичное формуле Бине, можно написать и для других последовательностей, определяемых соотношением xn+r = a0xn + a1xn+1 + ... + ar-1xn+r-1. Знаменатели этих прогрессий находятся как корни так называемого характеристического многочлена p(λ) = λr - ar-1λr-1 - ... - a1λ - a0. Например, для последовательности Фибоначчи характеристический многочлен равен λ2 - λ - 1. В общем случае надо использовать не только вещественные, но и комплексные корни многочлена (а если к тому же у него какой-то корень λ имеет кратность k > 1, то кроме геометрической прогрессии c λn в сумму могут входить еще последовательности c1n, c2n2λn,...,ck-1nk-1λn - тогда общее число членов в сумме будет всегда равно r).

Пусть через один такт времени красная клетка превращается в зеленую, а та в свою очередь через один такт делится на две - красную и зеленую. Тогда число клеток каждого поколения можно выразить числом Фибоначчи

Уже в нашем веке были найдены новые свойства и применения чисел Фибоначчи. Среди них - самый быстрый способ отыскания экстремума для функции y=f(x) с двумя промежутками монотонности [a, x*] и [x*, b] (т.е. с одним экстремумом): оказывается, в наилучшем плане поиска точки экстремума x*, состоящего из n шагов, участвуют числа Фибоначчи u1,u2,...,un+2.

ФИГУРНЫЕ ЧИСЛА

Про числа 25, 49, 100 говорят, что они являются квадратами. А почему? Потому что они получаются, если возвести числа 5, 7 и 10 в квадрат. Но имеет ли это название какое-нибудь отношение к геометрической фигуре - квадрату? Посмотрим на рис. 1. Солдаты стоят правильными рядами, образуя квадраты. Число солдат внутри такого квадрата легко подсчитать - нужно умножить их число вдоль горизонтальной стороны на число солдат вдоль вертикальной стороны (заметим, что эти числа равны), и получится общее количество солдат внутри квадрата.