Выбрать главу

1 = 12

1 + 3 = 22

1 + 3 + 5 = 32

1 + 3 + 5 + 7= 42

1 = 13

3 + 5 = 23

7 + 9 + 11 = 33

13 + 15 + 17 + 19 = 43

Большой популярностью даже в наши дни пользуются магические квадраты (см. Магические и латинские квадраты). Это квадраты, в каждую клетку которых вписаны числа так, что суммы чисел вдоль любой горизонтали, любой вертикали и любой диагонали равны (рис. 1). Такой магический квадрат изображен на гравюре немецкого художника А. Дюрера «Меланхолия».

Рис. 1

АСИМПТОТА

Асимптота кривой – это прямая, к которой кривая приближается сколь угодно близко при удалении в бесконечность. Представьте себе мчащийся по прямолинейному шоссе автомобиль и всадника, скачущею по полю с той же скоростью, но направленной в каждый момент на автомобиль. Маршрут всадника в этом случае будет кривой линией, называемой трактрисой, для которой линия шоссе является асимптотой. Если кривая, заданная уравнением y=f(x), удаляется в бесконечность при приближении x к конечной точке a, то прямая x = a называется вертикальной асимптотой этой кривой. Такими асимптотами являются прямая x=0 для гиперболы y = 1/x, каждая из прямых x=kπ  (k = 0,±1,±2,...) для функции y = ctg x (рис. 1).

Рис. 1

Помимо вертикальной асимптоты x=0 гипербола y = 1/x имеет еще и горизонтальную асимптоту y=0, как и график функции y = e-xsin x, однако он, в отличие от гиперболы, пересекает свою горизонтальную асимптоту в бесконечном множестве точек (рис. 2).

Рис. 2

У кривой, носящей название «декартов лист» (рис. 3), уравнение которой x3 + y3 - 3axy = 0, имеется наклонная асимптота, как и у кривой y = x + 1/x2 (рис. 4). Коэффициенты k и b в уравнении прямой y = kx + b, являющейся наклонной асимптотой кривой y=f(x) при стремлении к плюс или минус бесконечности, находятся как пределы:

, .

Горизонтальная асимптота является частным случаем наклонной при k = 0.

Рис. 3

Рис. 4

Исследование асимптот позволяет более четко представить поведение графика функции, поскольку свойства функции вблизи ее асимптоты очень близки к свойствам асимптоты – линейной функции, свойства которой хорошо изучены. Систематическое использование этого свойства породило целое направление в современной математике - «асимптотические методы исследования». Таким образом, понятие, возникшее еще в Древней Греции, переживает в наше время второе рождение.

Не у всякой кривой, уходящей в бесконечность, есть асимптота. Например, известная вам кривая парабола асимптот не имеет.

БЕРНУЛЛИ ЛЕМНИСКАТА

Лемниската – кривая, у которой произведение расстояний каждой ее точки до двух заданных точек – фокусов – постоянно и равно квадрату половины расстояния между ними. Эта линия изображена на рисунках, по форме напоминает восьмерку. Ее автор – швейцарский математик Якоб Бернулли (1654-1705) дал этой кривой поэтическое название «лемниската». В античном Риме так называли бантик, с помощью которого прикрепляли венок к голове победителя на спортивных играх.

Уравнение лемнискаты в прямоугольных координатах: (x2 + y2)2 - 2a2(x2 - y2) = 0, уравнение в полярных координатах: p2 = 2a2 cos 2φ.

ВЕКТОР

Вектор – одно из основных геометрических понятий. Вектор характеризуется числом (длиной) и направлением. Наглядно его можно представить себе в виде направленного отрезка, хотя, говоря о векторе, правильнее иметь в виду целый класс направленных отрезков, которые все параллельны между собой, имеют одинаковую длину и одинаковое направление (рис. 1). Примерами физических величин, которые имеют векторный характер, могут служить скорость (поступательно движущегося тела), ускорение, сила и др.

Рис. 1

Понятие вектора появилось в работах немецкого математика XIX в. Г. Грассмана и ирландского математика У. Гамильтона; затем оно было охотно воспринято многими математиками и физиками. В современной математике и ее приложениях это понятие играет важнейшую роль. Векторы применяются в классической механике Галилея-Ньютона (в ее современном изложении), в теории относительности, квантовой физике, в математической экономике и многих других разделах естествознания, не говоря уже о применении векторов в различных областях математики.

Каждый из направленных отрезков, составляющих вектор (рис. 1), можно назвать представителем этого вектора. Вектор, представителем которого является направленный отрезок, идущий от точки A к точке B, обозначается через . На рис. 1 имеем   , т.е.  и  - это один и тот же вектор (представителями которого являются оба направленных отрезка, выделенных на рис. 1). Иногда вектор обозначают малой буквой со стрелкой: , .

Вектор, изображаемый направленным «отрезком», у которого начало и конец совпадают, называется нулевым; он обозначается через , т.е. . Два параллельных вектора, имеющих одинаковые длины, но противоположные направления, называются противоположными. Если вектор обозначен через , то противоположный ему вектор обозначается через .

Назовем основные операции, связанные с векторами.

I. Откладывание вектора от точки. Пусть  - некоторый вектор и A - точка. Среди направленных отрезков, являющихся представителями вектора , имеется направленный отрезок, начинающийся в точке A. Конец B этого направленного отрезка называется точкой, получающейся в результате откладывания вектора  от точки A (рис. 2). Эта операция обладает следующим свойством:

I1. Для любой точки A и любого вектора  существует, и притом только одна, точка B, для которой .

Рис. 2

Сложение векторов. Пусть  и  - два вектора. Возьмем произвольную точку A и отложим вектор  от точки A, т.е. найдем такую точку B, что  (рис. 3). Затем от точки B отложим вектор , т. е. найдем такую точку C, что . Вектор  называется суммой векторов  и  и обозначается через . Можно доказать, что сумма  не зависит от выбора точки A, т.е. если заменить A другой точкой A1, то получится вектор , равный  (рис. 3). Из определения суммы векторов вытекает, что для любых трех точек A,B,C справедливо равенство

I2:

(«правило трех точек»). Если ненулевые векторы