Выбрать главу

.

При больших n вычисления по этой формуле довольно сложны и технически трудны; для этого обычно используют приближенную формулу (локальную теорему Муавра-Лапласа), согласно которой

.

В теоретических и прикладных задачах часто приходится находить суммы вида . При больших n, a и b такие вычисления требуют значительных усилий. Для их приближенного вычисления используется интегральная теорема Муавра - Лапласа, согласно которой

, , .

Обе теоремы дают очень высокую точность. Они относятся к так называемым предельным теоремам теории вероятностей.

Швейцарский математик Я. Бернулли (1654-1705) обнаружил фундаментальный факт теории, получивший название закона больших чисел в форме Бернулли. Пусть μ обозначает число появлений события A в n независимых испытаниях, в каждом из которых событие A наступает с вероятностью p.

Каково бы ни было число ε > 0, имеет место соотношение

,

т.е. что вероятность отклонения частоты μ / n появления события от p =  вероятности этого события больше, чем на ε, стремится к 0.

Наряду со случайными событиями в теории вероятностей и ее применениях рассматривают случайные величины. Представим себе, что при каждом наблюдении некоторая величина принимает какое-то значение в зависимости от случая; например, число космических частиц, попадающих за данный промежуток времени на определенную площадку поверхности; число обрывов пряжи, изготовленной из хлопка определенного сорта и заданного номера, при испытаниях на разрыв. Таких примеров можно привести сколько угодно.

Случайные величины различаются как теми значениями, которые они способны принимать, так и вероятностями, с которыми эти значения принимаются. Так, число вызовов от абонентов на телефонной станции за промежуток времени t может быть любым целым числом: 0, 1, 2, … . Как показывают многочисленные наблюдения, вероятность того, что число вызовов окажется равным k, согласуется с формулой Pk(t) = (1/k!)(λt)ke-λt, где λ - некоторая положительная постоянная.

Скорость молекулы газа также случайна и может принимать любые значения. Этих значений столько же, сколько положительных чисел. Как в этом случае задавать вероятности этих значений? Математики пошли по такому пути: стали определять не вероятность каждого из возможных значений, а вероятность того, что случайная величина ξ примет значение меньшее, чем заданное значение x:P{ξ<x} = F(x). Функция F(x) получила наименование функции распределения случайной величины ξ. Из теоремы сложения легко вывести следующее важное равенство: P{a ≤ ξ < b} = F(b) - F(a), позволяющее по функции распределения определять вероятность выполнения указанного неравенства.

АНДРЕЙ АНДРЕЕВИЧ МАРКОВ

(1856-1922)

А. А. Марков русский математик, представитель петербургской математической школы. Он родился в Рязани. В 1874 г. поступил на физико-математический факультет Петербургского университета, где под влиянием П. Л. Чебышева занялся теорией непрерывных дробей и теорией чисел.

В 1884 г. Марков защитил докторскую диссертацию, посвященную непрерывным дробям, в которой доказал и обобщил некоторые неравенства Чебышева, опубликованные раньше без доказательств. Маркову принадлежат также многочисленные работы по различным разделам математического анализа. В 1890 г. за глубокие научные исследования Марков был избран академиком Петербургской академии наук.

С конца 90-х гг. XIX в. главным предметом исследований ученого стала теория вероятностей. Здесь он продолжил работу своего учителя П. J1. Чебышева и ввел новый объект исследования – последовательности зависимых случайных величин, получившие в дальнейшем название марковских цепей. Так называют последовательности случайных величин, для которых вероятность появления того или иною значения на (k+1)-м шагу зависит лишь от того, какое значение эта величина приняла на k-м шагу, и не зависит от значений величины на 1-м, 2-м, ..., (k-1)-м шагах.

Марковские цепи сразу после их открытия не нашли практических приложений, и ученому пришлось применять свои результаты к распределению гласных и согласных букв в поэме А. С. Пушкина «Евгений Онегин». Ведь за согласной чаще идет гласная, а за гласной – согласная, и в первом приближении можно считать, что вероятность появления гласной на (k+1)-м месте зависит лишь от того, гласной или согласной является буква, стоящая на k-м месте. Но, как всегда бывает с глубокими научными результатами, в дальнейшем были обнаружены гораздо более важные для практики области приложения марковских цепей (например, теория массового обслуживания). Из теории марковских цепей возникла общая теория случайных процессов, которая применяется при изучении лавинных процессов и других проблем.

А. А. Марков был страстным и убежденным борцом против произвола и несправедливости царского режима, выступал против попыток подчинить преподавание математики в школе религиозным взглядам. Он отказался от царских орденов, подал в Синод просьбу об отлучении от церкви, указав в ней, что не сочувствует всем религиям, которые, подобно православию, поддерживаются огнем и мечом и сами служат им. Резкие выпады против веры в чудеса содержатся в учебнике А. А. Маркова «Исчисление вероятностей», опубликованном в дореволюционное время. После выхода книги ученого обвинили в безбожии и «подрыве основ». От преследований его избавил лишь крах царского режима.

------------------------------------------

В теории вероятностей и ее применениях важную роль играют числовые характеристики случайных величин – математическое ожидание и дисперсия. Мы дадим их определение для дискретных случайных величин. Пусть x1, x2,... - возможные значения случайной величины ξ и p1, p2,... - вероятности этих значений, тогда сумма

называется математическим ожиданием ξ, а E(ξ - Eξ)2 = Dξ - дисперсией ξ.

П.Л. Чебышев доказал закон больших чисел в очень общей форме, а именно: пусть ξ1, ξ2, ... - последовательность независимых случайных величин с математическими ожиданиями a1, a2,... и дисперсиями k, ограниченными одной и той же величиной C, тогда для любого положительного ε > 0 выполняется

.

Вторая предельная теорема получила наименование теоремы Ляпунова, или центральной предельной теоремы: если случайные величины ξ1, ξ2, ... независимы, имеют конечные математические ожидания a1, a2,... и дисперсии k = b2k, то при дополнительном условии равномерной малости отдельных слагаемых имеет место:

,

где .

Эта теорема является значительным обобщением интегральной теоремы Муавра-Лапласа.

В нашем веке в связи с физическими, биологическими, инженерными и другими исследованиями возникла необходимость рассматривать случайные процессы ξ(t), т.е. случайные функции от одного независимого переменного t, под которым обычно понимается время.