Выбрать главу

Задача 2. Через точку A, данную внутри угла (меньшего, чем развернутый), провести прямую, отрезок которой, заключенный между сторонами угла, делится в этой точке пополам.

Решение. Обозначим через z симметрию относительно точки A, а через P и Q - прямые, на которых лежат стороны угла (рис. 3). В результате симметрии z прямая P переходит в параллельную ей прямую P' которая пересекает вторую сторону угла в точке C. Так как C ∈ P', то точка D, симметричная C, принадлежит прямой, которая симметрична P', т.е. D ∈ P. Таким образом, точки D ∈ P и C ∈ Q симметричны относительно A, и потому отрезок CD делится в точке A пополам, т.е. прямая CD - искомая.

Рис. 3

Нетрудно понять, почему в задаче 1 была применена осевая, а в задаче 2 – центральная симметрия. Так как биссектриса угла – его ось симметрии, то попытка применить осевую симметрию в задаче 1 совершенно естественна (так же, как и применение центральной симметрии в задаче 2, поскольку отрезок CD должен делиться в точке A пополам, т.е. искомые точки C и D должны быть симметричными относительно точки A). И в других случаях анализ условия задачи позволяет найти движение, применение которого дает решение.

Задача 3. На сторонах AB и BC треугольника ABC построены вне его квадраты ABMQ и BCPN. Доказать, что отрезок MN перпендикулярен медиане BD треугольника ABC и вдвое длиннее этой медианы.

Решение. Попытаемся применить поворот на 90°, т. е. убедиться, что при повороте на 90° вокруг точки B (по часовой стрелке) отрезок MN перейдет в отрезок, параллельный BD и имеющий вдвое большую длину. При этом повороте вектор  переходит в  (рис. 4), а вектор  в . Следовательно, вектор  переходит в , т. е. в . Но так как , то . Итак, при повороте на 90° вектор  переходит в , т.е. в вектор, равный . Отсюда вытекает, что  и |MN| = 2|BD|.

Рис. 4

Весьма существенна связь движений с ориентацией. На рис. 5 изображен многоугольник F, на контуре которого задано положительное направление обхода (против часовой стрелки). При параллельном переносе получается многоугольник с тем же направлением обхода, т.е. параллельный перенос сохраняет направление обхода, или, как говорят, сохраняет ориентацию. Поворот (в частности, центральная симметрия, представляющая собой поворот на 180°) также сохраняет ориентацию (рис. 6). Напротив, осевая симметрия меняет направление обхода на противоположное (рис. 7), т.е. меняет ориентацию. Другой пример движения, меняющего ориентацию – скользящая симметрия, т.е. композиция симметрии относительно некоторой прямой l и параллельного переноса, вектор которого параллелен l (рис. 8).

Рис. 5

Рис.6

Рис. 7

Рис. 8

Французский механик и геометр XIX в. М. Шаль сформулировал следующую теорему: всякое сохраняющее ориентацию движение плоскости является либо параллельным переносом, либо поворотом; всякое меняющее ориентацию движение плоскости является либо осевой, либо скользящей симметрией.

Задача 4. Доказать, что композиция двух осевых симметрий с пересекающимися осями представляет собой поворот.

Решение. Пусть s1 и s2 - осевые симметрии, оси которых (прямые l1 и l2) пересекаются в точке O. Так как оба движения s1,s2 меняют ориентацию, то их композиция s2 ∘ s1 (сначала выполняется s1, затем s2) является движением, сохраняющим ориентацию. По теореме Шаля, s2 ∘ s1 есть либо параллельный перенос, либо поворот. Но так как при каждом движении s1,s2 точка O неподвижна, то и при их композиции точка O остается на месте. Следовательно, s2 ∘ s1 есть поворот вокруг точки O. Как найти угол поворота, понятно из рис. 9: если φ - угол между прямыми l1 и l2, то (поскольку точка A ∈ l1 переводится движением s1 в себя, а движением s2 - в симметричную относительно l2 точку B) движение s2 ∘ s1, переводящее A в B, представляет собой поворот (вокруг точки O) на угол .

Рис. 9

Следующую по важности группу геометрических преобразований плоскости составляют преобразования подобия. Наиболее простое из них – гомотетия. Напомним, что гомотетией с центром O и коэффициентом k ≠ 0 называется геометрическое преобразование, которое произвольно взятую точку A переводит в такую точку A', что  (рис. 10). Гомотетия переводит каждую прямую в параллельную ей прямую, каждую окружность снова переводит в окружность. Гомотетия сохраняет углы, а все длины увеличивает в |k| раз: если при гомотетии точки A,B переходят в A'B', то |A'B'| = |k|·|AB|. Из этого вытекает, что гомотетия сохраняет форму (но не размеры) фигур; если, например, k > 1, то фигура F', в которую переходит фигура F при гомотетии с центром O и коэффициентом k, представляет собой увеличенную копию фигуры F (рис. 10), а если 0 < k < 1 - уменьшенную копию.

Рис. 10

Поскольку при гомотетии все длины изменяются в одинаковое число раз, отношение длин не меняется. На этом основаны различные способы оценки расстояний; например, зная длину руки и длину большого пальца и прикинув, сколько раз большой палец вытянутой руки укладывается в видимом образе предмета, можно найти отношение высоты вертикального предмета к расстоянию до него (на рис. 11 имеем |AB| : |BO| = |A'B'| : |B'O|, откуда, измерив |BO|, можно найти |AB|, а потому и высоту трубы, которая примерно втрое больше |AB|).

Рис. 11

Задача 5. Построить квадрат, вписанный в данный сектор (две вершины квадрата лежат на одном радиусе, третья – на другом, четвертая – на дуге сектора).

Решение. Пусть ABCD и A1B1C1D1 (рис. 12) – два квадрата, вписанные в угол MON. При гомотетии с центром O, переводящей точку B в B1, (коэффициент этой гомотетии равен k = |OB1|/|OB|), отрезок AB переходит в отрезок A1B1, а потому квадрат ABCD переходит в квадрат A1B1C1D1 (поскольку углы, а также отношение отрезков сохраняются). Из этого вытекает, что вершины C и C1, лежат на одном луче, исходящем из точки O. Теперь ясно, что, построив какой-нибудь квадрат ABCD, вписанный в угол MON, и проведя луч OC, мы сможем найти вершину C' искомого квадрата (т.е. точку пересечения луча OC с дугой MN сектора), а затем достроить искомый квадрат (рис. 13).