В Постановлении Пленума ЦК КПСС от 18 февраля 1988 г. подчеркивается: «Важно предоставить каждому человеку возможность постоянного пополнения знаний через разнообразные формы обучения... Стремление к овладению знаниями, духовному росту должно поощряться, получать общественное, государственное признание... Следует уделять первостепенное внимание развитию индивидуальных способностей учащихся, расширять дифференцированное обучение учащихся в соответствии с их запросами и склонностями».
Мы убеждены, что предлагаемая книга внесет свой вклад в большое всенародное дело воспитания нового человека, способного отдавать свои знания и силы решению больших задач, стоящих перед нашим народом.
В добрый путь, друзья!
Академик АН УССР
ГНЕДЕНКО Б. В.
ОТ РЕДКОЛЛЕГИИ
Дорогие ребята! В этой книге собрано около 200 статей, посвященных основным понятиям математики и ее приложениям.
Ряд статей словаря, такие, как «Группа», «Геометрические преобразования», «Топология», знакомят с новыми областями математики, бурно развивающимися в последние десятилетия. Не забыты и математические развлечения, в том числе и знаменитый венгерский кубик.
В нашей стране много делается для того, чтобы математически одаренные юноши и девушки могли развивать свои способности. Проводятся математические олимпиады, создаются летние математические школы. Об этом вы также сможете прочитать в статьях словаря.
Книга познакомит вас с жизнью и творчеством великих математиков всех времен, с современными и русскими математиками.
Словарь иллюстрирован многочисленными схемами и графиками, которые дополняют текст. Образные иллюстрации, которые даны, например, к статьям «Алгебра», «Арифметика», «Анализ математический», «Геометрия», «Функция», тесно связаны с содержанием статьи, и понять их можно, только прочитав статьи.
Статьи в книге расположены в алфавитном порядке их названий. Если же интересующее вас понятие не является названием статьи словаря, то следует посмотреть в алфавитный указатель, находящийся в конце книги.
Некоторые слова в тексте набраны курсивом. Это значит, что в словаре имеется статья с таким названием. Ряд статей, в частности биографии ученых, даны не в алфавитном порядке, а как приложения к другим статьям. Чтобы найти их, также удобно воспользоваться алфавитным указателем, где даны страницы, на которых напечатаны эти статьи. В конце книги имеется список рекомендованной литературы.
АКСИОМА
Начальные геометрические сведения дошли до нас из глубокой древности. Например, формулы для вычисления площадей земельных участков, имеющих форму прямоугольника, треугольника, трапеции, приведены в древнеегипетских математических папирусах, относящихся к 2000 г. до н.э., в клинописных таблицах Древнего Вавилона.
Начальные геометрические знания были добыты опытным путем. Получение новых геометрических фактов при помощи рассуждений (доказательств) началось от древнегреческого ученого Фалеса (VI в. до н.э.). Ему приписывают установление свойств равнобедренного треугольника, доказательство равенства вертикальных углов, доказательство того, что вписанный угол, опирающийся на диаметр – прямой, и др. Фалес, по-видимому, применял поворот части фигуры и перегибание чертежа, т.е. то, что в наши дни называют перемещениями, или движениями (см. Геометрические преобразования).
Постепенно доказательства приобретают в геометрии все большее значение. К III в. до н.э. геометрия становится дедуктивной наукой, т.е. наукой, в которой большинство фактов устанавливается путем вывода (дедукции), доказательства. К этому времени относится книга «Начала», написанная древнегреческим ученым Евклидом (см. Евклид и его «Начала»). В ней доказываются свойства параллелограммов и трапеций, приведена теорема Пифагора (см. Пифагора теорема), изучается подобие многоугольников, рассматриваются многие другие геометрические факты.
В этой книге Евклид проводит аксиоматический взгляд на геометрию. Точка зрения Евклида была следующей. Взяв какую-либо теорему, можно проследить, какие ранее доказанные теоремы были использованы при ее выводе. Для этих ранее доказанных теорем в свою очередь можно выделить те более простые факты, из которых они выводятся, и т.д. В конце концов получается набор некоторых фактов, которые позволяют доказать все изучаемые теоремы геометрии. Эти выделенные факты настолько просты, что не возникает вопроса о необходимости их вывода. Их назвали аксиомами (это греческое слово означает «удостоенное, принятое положение»).
Весь набор аксиом (система) называется аксиоматикой. Таким образом, аксиомы – это первоначальные факты геометрии, которые принимаются без доказательства и позволяют вывести из них все дальнейшие факты этой науки. Утверждения, выводимые из аксиом, называют теоремами.
Среди сформулированных Евклидом аксиом имеются, например, следующие: «через две точки можно провести прямую»; «порознь равные третьему равны между собой»; «если в плоскости даны прямая и лежащая вне этой прямой точка, то через эту точку можно провести в плоскости не более одной прямой, которая не пересекается с данной» (последняя из этих аксиом – аксиома параллельности – у Евклида формулировалась иначе).
Аксиомы есть не только в геометрии, но и в алгебре, и других математических науках. Например, равенства:
a + b = b + a,
a · b = b · a,
a + (b + c) = (a + b) + c,
a · (be) = (ab) · c,
a + 0 = a,
a · 1 = a,
a + (-a) = 0,
a · (1/a) = 1, при a≠0,
a · (b + c) = ab + ac,
выражающие свойства сложения и умножения, являются в алгебре аксиомами: они принимаются без доказательства и используются для вывода новых фактов (для доказательства теорем). Например, с помощью аксиом доказывают формулы квадрата суммы или разности, правила умножения многочленов, формулу суммы членов геометрической прогрессии и т.д.
В каждой математической науке аксиомы возникают в процессе ее долгого и сложного исторического развития. Первоначальные факты накапливаются в результате практической деятельности человека. Их проверяют, уточняют, систематизируют. Исключают из них те, которые могут быть выведены из других первоначальных фактов. Иногда обнаруживается, что оставшийся список простейших фактов (аксиом) – неполный, т.е. этих фактов недостаточно для вывода всех теорем, и тогда к этому списку добавляют недостающие аксиомы. В результате и получается полный набор аксиом (аксиоматика).
После Евклида математики многих поколений стремились улучшить, дополнить его аксиоматику геометрии. Большую роль сыграли работы современника Евклида, древнегреческого ученого Архимеда, который сформулировал аксиомы, относящиеся к измерению геометрических величин. Из ученых более позднего времени существенный вклад в усовершенствование аксиоматики геометрии внесли русский математик Н.И.Лобачевский, французский математик М. Паш, итальянский математик Д. Ж. Пеано. Логически безупречный список аксиом геометрии был указан на рубеже XIX и XX вв. немецким математиком Д. Гильбертом.