Рис. 18
Рис. 19
Рис. 20
Задача 7. На сторонах треугольника A1A2A3 построены вне его подобные между собой треугольники A1B1A2, A2B2A3, A3B3A1. Доказать, что точка пересечения медиан ΔB1B2B3 совпадает с точкой пересечения медиан ΔA1A2A3.
Решение. Обозначим через a1,a2,a3,b1,b2,b3 комплексные числа, изображаемые векторами
(z-1)(b1 + b2 + b3) = (z-1)(a1 + a2 + a3) .
Рис. 21
Так как z ≠ 1 (поскольку аргумент φ числа z отличен от нуля), то отсюда следует, что b1 + b2 + b3 = a1 + a2 + a3. Переходя к векторным обозначениям и деля на 3, получаем
а это и означает, что точки пересечения медиан ΔB1B2B3 и ΔA1A2A3 совпадают (см. Вектор).
Расскажем коротко и о других преобразованиях, играющих важную роль в современной геометрии. Преобразование f евклидовой плоскости называется аффинным, если оно каждую прямую переводит снова в прямую, а параллельные между собой прямые – снова в параллельные (рис. 22). Если на плоскости введена система координат, то аффинное преобразование задается линейными соотношениями, т.е. точка A'(x';y'), в которую переходит точка A(x;y), определяется формулами
где ad - bc ≠ 0 (и обратно: такими формулами задается некоторое аффинное преобразование). Далее, если A,B,C - три точки плоскости, не лежащие на одной прямой, и A', B', C' - три другие точки, также не лежащие на одной прямой, го существует, и притом только одно, аффинное преобразование, переводящее точки A,B,C соответственно в A', B', C'. Отметим, что длины и углы могут изменяться при аффинных преобразованиях. Не сохраняется (в отличие от преобразований подобия) и отношение длин отрезков. Однако отношение длин двух параллельных отрезков сохраняется при любом аффинном преобразовании. В частности, середина отрезка переходит при аффинном преобразовании снова в середину отрезка, параллелограмм переходит в параллелограмм, медиана треугольника в медиану и т. п. Круг при аффинном преобразовании переходит в эллипс, причем из отмеченных выше свойств аффинных преобразований легко следует, что середины параллельных между собой хорд эллипса лежат на одном отрезке, проходящем через центр эллипса (рис. 23).
Рис. 22
Рис. 23
Все аффинные преобразования плоскости, вместе взятые, образуют группу преобразований, и потому (см. Геометрия) они определяют некоторую геометрию. Она называется аффинной геометрией. Инвариантами этой группы (т.е. теми свойствами фигур, которые изучаются в аффинной геометрии) являются прямолинейное расположение точек, параллельность, отношение длин параллельных отрезков и другие свойства, получаемые из этих (например, наличие у фигуры центра симметрии). Не говоря более подробно об этой геометрии, покажем на примерах, как отмеченные выше свойства аффинных преобразований могут быть применены при решении задач.
Задача 8. Доказать, что в произвольной трапеции середины оснований, точка пересечения диагоналей и точка пересечения продолжений боковых сторон лежат на одной прямой.
Решение. Для равнобочной трапеции это очевидно (так как равнобочная трапеция симметрична относительной прямой, проходящей через середины оснований). Пусть теперь A'B'C'D' - произвольная трапеция и пусть ABCD - равнобочная трапеция с теми же длинами оснований (рис. 24). Рассмотрим аффинное преобразование, переводящее точки A,B,C соответственно в A', B', C'. При этом преобразовании прямые AD, BC перейдут в A'D', B'C' (поскольку AD || BC, а параллельность прямых сохраняется). Далее, так как |AD| / |BC| = |A'D'| / |B'C'|, то точка D перейдет в D' (поскольку отношение параллельных отрезков сохраняется). Иначе говоря, трапеция ABCD перейдет в трапецию A'B'C'D'. Следовательно, прямолинейное расположение точек M,N,P,Q сохранится, т.е. в трапеции A'B'C'D' точки M',N',P',Q' также лежат на одной прямой.
Рис. 24
Задача 9. В треугольнике A'B'C' вписан эллипс и проведены три отрезка, каждый из которых соединяет вершину и точку касания эллипса с противоположной стороной. Доказать, что эти три отрезка пересекаются в одной точке.
Решение. Пусть f - аффинное преобразование, которое переводит некоторую окружность в рассматриваемый эллипс, и пусть ABC - треугольник, который при этом преобразовании переходит в ΔA'B'C'. Так как для вписанной окружности рассматриваемое свойство, как нетрудно доказать, справедливо (левая часть рис. 25), то оно справедливо и для вписанного эллипса (правая часть рисунка).
Рис. 25
В статье «Проективная геометрия» рассказано о том, как пополнение плоскости несобственными («бесконечно удаленными») точками превращает ее в проективную плоскость. Геометрические преобразования проективной плоскости, которые сохраняют прямолинейное расположение точек, называются проективными преобразованиями. Проективные преобразования задаются в координатах дробно-линейными формулами:
Более подробно: если π - евклидова плоскость, в которой задана система координат, а π* - проективная плоскость, получающаяся из π присоединением несобственных элементов, то любое проективное преобразование плоскости π* записывается в рассматриваемых координатах формулами (1) при условии, что точка A(x;y) и точка A'(x';y'), в которую она переходит, не являются несобственными.
Проективные преобразования образуют группу преобразований проективной плоскости. Согласно Эрлангенской программе, эта группа определяет некоторую геометрию – это и есть проективная геометрия. Инвариантами проективных преобразований (т.е. теми свойствами фигур, которые изучаются в проективной геометрии) являются прямолинейное расположение точек, ангармоническое отношение четырех точек, лежащих на одной прямой, и др.