В III в. до н.э. древнегреческий ученый Евклид написал книгу под названием «Начала» (см, Евклид и его «Начала»). В этой книге Евклид подытожил накопленные к тому времени геометрические знания и попытался дать законченное аксиоматическое изложение этой науки. Написана она была настолько хорошо, что в течение 2000 лет всюду преподавание геометрии велось либо по переводам, либо по незначительным переработкам книги Евклида. Например, таким пособием был учебник А. П. Киселева, по которому советская школа работала до середины этого столетия.
Продуманное и глубоко логическое изложение геометрии, данное в книге Евклида, привело к тому, что математики не мыслили возможности существования геометрии, отличной от евклидовой. Немецкий философ-идеалист XVIII в. И. Кант и многие его последователи считали, что понятия и идеи евклидовой геометрии (единственно возможной, чуть ли не божественной) были заложены в человеческое сознание еще до того, как человек научился что-либо осознавать. Происхождение этой мысли Канта становится понятным, если мы проследим процесс возникновения геометрических знаний в сознании ребенка. Дети много тысяч раз видят, например, прототипы прямых линий в жизни: угол дома или обрез книжной страницы, натянутую нитку или луч света, край стола или двери – все это, запечатленное в сознании ребенка, делает его психологически подготовленным к восприятию понятия «прямая». То же относится к прямым углам и перпендикулярам (которые мы видим с детства на каждом шагу), окружностям (колесо, пуговица, солнечный диск, край тарелки или блюдца), параллелограммам и другим фигурам. Отраженные в сознании, эти представления подготавливают восприятие геометрических понятий. Учитель же систематизирует, упорядочивает эти представления и дает школьникам соответствующий термин, завершающий и закрепляющий образование понятия.
«Геометрия – правительница всех мысленных изысканий». М. В. Ломоносов
Лишь в XIX в. благодаря в первую очередь трудам выдающегося русскою математика Н. И. Лобачевского было установлено, что евклидова геометрия не является единственно возможной. Вслед за тем математики создали и исследовали многие различные «геометрии». Особенно большая заслуга в расширении наших представлений о возможных геометрических пространствах принадлежит немецкому математику XIX в. Г. Ф. Б. Риману. Он открыл способ построения бесконечно многих «геометрий», которые локально, «в малом» устроены почти так же, как и евклидова геометрия, но обладают «кривизной», сказывающейся при рассмотрении больших кусков пространства. По преданию, К. Ф. Гаусс, обогативший математику многими замечательными открытиями (в том числе и в области геометрии), ушел после доклада Римана, глубоко задумавшись над ошеломившими его новыми геометрическими идеями.
Интересно проследить связь геометрических идей с современной физикой. Часто идеи, обогащающие математику новыми понятиями и методами, приходят из физики, химии и других разделов естествознания. Типичным примером может служить понятие вектора, пришедшее в математику из механики. Но в отношении неевклидовых геометрий дело обстоит как раз наоборот: созданные внутри математики под воздействием ее внутренних потребностей и ее собственной логики развития, эти новые геометрические понятия проложили пути создания современной физики. В частности, геометрия Лобачевского нашла применение в специальной теории относительности, стала одной из математических основ этой теории, а риманова геометрия служит фундаментом общей эйнштейновской теории относительности. Можно даже сказать, что общая теория относительности – это больше геометрия, чем физика, и здесь обнаруживается влияние идей немецкого математика Д. Гильберта, который сотрудничал с А. Эйнштейном при создании этой теории. Важные приложения имеет риманова геометрия в теории упругости и в других разделах физики и техники.
Нечто похожее произошло и с другим разделом современной геометрии – с так называемым выпуклым анализом. Начала теории выпуклых фигур были заложены в XIX в. немецким математиком Г. Минковским. Несколько красивых теорем, полученных им, привлекли внимание математиков к новой теории. Однако поскольку они не находили применения в других разделах математики, а тем более в естествознании, то в то время создалось впечатление, что Минковский создал очень изящную, но совершенно бесполезную математическую игрушку. Но прошли десятилетия, и совершенно неожиданно теоремы о выпуклых множествах нашли различные применения: сначала в самой математике (при решении геометрических экстремальных задач), а затем в математической экономике, теории управления и других прикладных областях.
В современной геометрии есть и много других направлений. Одни сближают се с теорией чисел, другие с квантовой физикой, третьи – с математическим анализом. А некоторые разделы современной математики таковы, что трудно сказать, чего в них больше: геометрии, алгебры или анализа.
Геометрия не только обогатилась новыми направлениями, находящимися далеко за пределами той колыбели, из которой она выросла, евклидовой геометрии. Много нового появилось со времен Евклида и в самой евклидовой геометрии. Еще в XVII в. благодаря работам французского математика и философа Р. Декарта возник метод координат, ознаменовавший собой революционную перестройку всей математики, и в частности геометрии. Появилась возможность истолковывать алгебраические уравнения (или неравенства) в виде геометрических образов (графиков) и, наоборот, искать решение геометрических задач с помощью аналитических формул, систем уравнений. Так в рамках евклидовой геометрии появилась ее новая ветвь аналитическая геометрия, явившаяся мощным средством исследования геометрических образов. Например, метод координат позволяет быстро и с помощью несложных вычислений вывести основные свойства линий второго порядка (эллипса, гиперболы, параболы). Теоремы об этих линиях, найденные древнегреческим ученым Аполлонием и некогда считавшиеся вершиной геометрии, сейчас с помощью методов аналитической геометрии изучаются в вузах и техникумах.
В работах математиков XIX в. У. Гамильтона, Г. Грассмана и других были введены векторы, которые ранее в трудах Архимеда, Г. Галилея и других корифеев науки имели лишь механический смысл, а теперь приобрели права гражданства в математике. С 60-х гг. нашего столетия векторы заняли прочное место и в школьном курсе геометрии. Применяемые в рамках евклидовой геометрии векторные методы значительно упрощают доказательства многих теорем и решение задач. Например, теорема косинусов, теорема о трех перпендикулярах и другие (которые раньше было доказать довольно трудно) стали легкими упражнениями на применение скалярного произведения векторов. Но роль векторов не только в упрощении трудных мест школьного курса. Гораздо важнее то, что векторные методы находят сейчас широкие применения в физике, химии, экономике, биологии, не говоря уже о многих разделах современной математики. Так, скалярное произведение вектоpa силы и вектора перемещения есть работа, векторное произведение вектора тока и вектора напряженности магнитного поля есть сила воздействия этого поля на проводник и т.д. Как видите, и здесь геометрия диктовала физике введение новых понятий, а не наоборот. А впоследствии, при рассмотрении многомерных пространств (о которых речь еще впереди), скалярное произведение приобрело еще больший вес и значение и стало важным рабочим аппаратом, применяемым буквально во всех областях математики и ее приложений.