Выбрать главу

Уже давно были найдены признаки делимости чисел, которые позволяют в некоторых случаях быстро установить делимость одного числа на другое, не прибегая к непосредственному делению «в столбик». Среди этих признаков практически наиболее удобны следующие (связанные с записью числа в десятичной системе):

а) для делимости на 2 нужно, чтобы последняя цифра числа делилась на 2;

б) для делимости на 3 нужно, чтобы сумма цифр числа делилась на 3;

в) для делимости на 4 нужно, чтобы число, записанное двумя последними цифрами, делилось на 4;

г) для делимости на 5 нужно, чтобы последняя цифра была 0 или 5;

д) для делимости на 8 нужно, чтобы число, записанное тремя последними цифрами, делилось на 8;

е) для делимости на 9 нужно, чтобы сумма цифр делилась на 9;

ж) для делимости на 10 нужно, чтобы последняя цифра была 0;

з) для делимости на 11 нужно, чтобы разность между суммой цифр, стоящих на четных местах, и суммой цифр, стоящих на нечетных местах, делилась на 11.

Развитие идеи делимости привело к понятию сравнения, использование которого позволило перенести в теорию чисел алгебраические методы и с их помощью получить большое количество интересных результатов.

ДИОФАНТОВЫ УРАВНЕНИЯ

Диофантовыми уравнениями называют алгебраические уравнения или системы алгебраических уравнений с целыми коэффициентами, для которых надо найти целые или рациональные решения. При этом число неизвестных в уравнениях должно быть не менее двух (если не ограничиваться только целыми числами). Диофантовы уравнения имеют, как правило, много решений, поэтому их называют неопределенными уравнениями. Это, например, уравнения:

3x + 5y = 7;

x2 + y2 = z2

3x3 = 4y3 = 5z3

Названы они по имени греческого математика Диофанта, жившего в III в. Его книга «Арифметика» содержала большое количество интересных задач, ее изучали математики всех поколений. Книга сохранилась до наших дней, ее можно найти в русском переводе в библиотеке.

Задачи поиска целочисленных и рациональных решений обычно тесно связаны между собой. Легко сообразить, какая связь есть между целочисленными решениями уравнения 3x3 + 4y3 = 5z3 и рациональными решениями уравнения 3/5 u3 + 4/5 v3 ( u = x/z, v = y/z).

К диофантовым уравнениям приводят задачи, по смыслу которых неизвестные значения величин могут быть только целыми числами.

Решение уравнений в целых числах – очень увлекательная задача. С древнейших времен накопилось много способов решения конкретных диофантовых уравнений, однако только в нашем веке появились общие приемы их исследования. Правда, линейные диофантовы уравнения и диофантовы уравнения 2-й степени научились решать давно.

Так, легко доказать, что по формулам x=4+5t, y = -1-3t (t - любое целое число) находятся все целочисленные решения уравнения 3x + 5y = 7. Формулы для нахождения целочисленных сторон прямоугольного треугольника (т.е. для решения уравнения x2 + y2 = z2) были известны еще древним индийцам: x = 2uv, y = u2 - v2, z = u2 + v2 (u и v - целые числа, u>v).

Решения диофантовых уравнений более высоких степеней, а также систем уравнений давались с большим трудом. Знаменитое уравнение П. Ферма, которое более трехсот лет назад он написал на полях «Арифметики» Диофанта, xn + yn = zn  (n>2) не решено до сих пор (см. Ферма великая теорема).

Даже при n = 3 диофантовы уравнения поддаются решению с большим трудом, причем ответы могут быть совершенно разными. Так, уравнение 3x3 + 4y3 = 5z3 совсем не имеет решений в целых числах, кроме нулевого. Уравнение x3+y3=2z3 имеет конечное число решений в целых числах, которые легко найти. Уравнение x3+y3=9z3 имеет бесконечно много целочисленных решений, однако написать для них формулы далеко не просто.

Правда, оказалось, что кубические уравнения стоят в некотором смысле особняком. В 20-е гг. нашего века английский математик Е. И. Морделл высказал гипотезу, что уравнение более высокой степени, чем 3, должно иметь, как правило, конечное число целочисленных решений. Эта гипотеза была в 1983 г. доказана голландским математиком Г. Фалтингсом. Тем самым подтвердилось, что уравнение Ферма xn + yn = zn при всяком n>2 имеет лишь конечное число решений в целых числах (без общих множителей). Однако пока нет способа найти эти решения.

Долгое время надеялись отыскать общий способ решения любого диофантова уравнения. Однако в 1970 г. ленинградский математик Ю. В. Матиясевич доказал, что такого общего способа быть не может.

Решение уравнений в целых числах – один из самых красивых разделов математики. Ни один крупный математик не прошел мимо теории диофантовых уравнений. Ферма, Эйлер и Лагранж, Дирихле и Гаусс, Чебышев и Риман оставили неизгладимый след в этой интереснейшей теории.

ДИРИХЛЕ ПРИНЦИП

Этот принцип утверждает, что если множество из N элементов разбито на n непересекающихся частей, не имеющих общих элементов, где N > n, то, по крайней мере, в одной части будет более одного элемента. Принцип назван в честь немецкого математика П. Г. Л. Дирихле (1805-1859), который успешно применял его к доказательству арифметических утверждений.

По традиции в популярной литературе принцип Дирихле объясняют на примере «зайцев и клеток»: если N зайцев сидят в n клетках и N > n, то хотя бы в одной клетке сидит более одного зайца. Часто применяют обобщение принципа Дирихле: если зайцев N > nk, то хотя бы в одной клетке сидит более k зайцев. Самая популярная задача на прямое применение принципа Дирихле такова: на Земле живет 3 млрд. человек, у каждого на голове – не более миллиона волос (цифры условные). Нужно доказать, что обязательно найдутся два человека с одинаковым числом волос. А какое число людей с одинаковым числом волос можно гарантировать?

На той же идее основано доказательство того, что при обращении обыкновенной дроби p/q, p < q, q > 0 в десятичную получается или конечная, или бесконечная периодическая десятичная дробь, причем длина периода не превосходит q - 1. Будем делить p на q «уголком» и следить за остатками. Если на каком-то шаге остаток будет нулевым, то получится конечная дробь. Если же все остатки будут отличны от нуля, то не позже, чем на (q - 1)-м шагу начнут повторяться остатки, а вслед за этим – и цифры в частном.

ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ

Дифференциальное исчисление – это раздел анализа математического, связанный главным образом с понятиями производной и дифференциала функции. В дифференциальном исчислении изучаются правила вычисления производных (законы дифференцирования) и применения производных к исследованию свойств функций.

Центральные понятия дифференциального исчисления – производная и дифференциал – возникли при рассмотрении большого числа задач естествознания и математики, приводивших к вычислению пределов одного и того же типа. Важнейшие среди них – физическая задача определения скорости неравномерного движения и геометрическая задача построения касательной к кривой. Рассмотрим подробно каждую из них.