Выбрать главу

Аксиома 1. Число игроков нечетно.

Аксиома 2. Каждый игрок участвует в четырех партиях.

Аксиома 3. В каждой партии участвуют два игрока.

Аксиома 4. Для каждых двух игроков имеется не более одной партии, в которой они оба участвуют.

«Так называемые аксиомы математики – это те немногие мыслительные определения, которые необходимы в математике в  качестве исходного пункта». Ф. Энгельс

Однако ученики не спешили выводить теоремы из этих аксиом: вдруг опять обнаружится противоречие. Учитель же заверил мальчиков, что, сколько бы теорем они ни выводили из этих аксиом, никогда противоречий не будет. Вот как он убедил их в этом.

Рассмотрим девятиугольник, в котором кроме сторон проведем девять диагоналей, соединяющих вершины через одну (рис. 2). Вершины девятиугольника будем считать «игроками», проведенные отрезки (стороны и диагонали) - «партиями», а концы соответствующего отрезка «игроками», участвующими в некоторой «партии». Мы получаем модель (или схему) интересующего нас турнира. Легко установить, что все четыре аксиомы здесь выполняются. Итак, удается построить модель, в которой выполняются все рассматриваемые аксиомы, причем эта модель построена из «материала» геометрии, т.е. науки, в непротиворечивости которой мы не сомневаемся.

Рис. 2

Предположим теперь, что из рассматриваемых четырех аксиом можно вывести две теоремы, противоречащие друг другу. Тогда доказательства этих двух теорем можно было бы повторить и в построенной модели (ведь в этой модели все четыре аксиомы имеют место). В результате получается, что, рассуждая о правильном девятиугольнике, мы можем получить две противоречащие друг другу теоремы. Но это означало бы, что геометрия - наука противоречивая, чего мы не допускаем. Таким образом, мы должны признать, что двух противоречащих друг другу теорем вывести из рассматриваемых четырех аксиом невозможно.

Вообще, пусть рассматриваются две теории P и Q, причем теория P задается аксиоматически (и в ее непротиворечивости мы заранее не уверены), а Q - это хорошо известная нам теория, в непротиворечивости которой мы не сомневаемся. Если из «материала» теории Q удается построить модель, в которой выполняются все аксиомы теории P, то этим непротиворечивость теории P будем считать установленной.

Именно с помощью построения моделей в современной математике установлена непротиворечивость геометрии в предположении непротиворечивости теории действительных чисел. Далее, установлена непротиворечивость теории действительных чисел – в предположении непротиворечивости теории рациональных чисел; наконец, установлена непротиворечивость теории рациональных чисел – в предположении непротиворечивости теории натуральных чисел.

АЛГЕБРА

Алгебра - часть математики, которая изучает общие свойства действий над различными величинами и решение уравнений, связанных с этими действиями. Решим задачу: «Возрасты трех братьев 30, 20 и 6 лет. Через сколько лет возраст старшего будет равен сумме возрастов обоих младших братьев?» Обозначив искомое число лет через x, составим уравнение: 30 + x = (20 + x) + (60 + x), откуда x = 4. Близкий к описанному метод решения задач был известен еще во II тысячелетии до н.э. писцам Древнего Египта (однако они не применяли буквенной символики). В сохранившихся до наших дней математических папирусах имеются не только задачи, которые приводят к уравнениям первой степени с одним неизвестным, как в задаче о возрасте братьев, но и задачи, приводящие к уравнениям вида ax2 = b (см. Квадратные уравнения).

Еще более сложные задачи умели решать с начала II тысячелетия до н.э. в Древнем Вавилоне: в математических текстах, выполненных клинописью на глиняных пластинках, есть квадратные и биквадратные уравнения, системы уравнений с двумя неизвестными и даже простейшие кубические уравнения. При этом вавилоняне также не использовали букв, а приводили решения «типовых» задач, из которых решения аналогичных задач получались заменой числовых данных. В числовой же форме приводились и некоторые правила тождественных преобразований. Если при решении уравнения надо было извлекать квадратный корень из числа a, не являющегося точным квадратом, находили приближенное значение корня x: делили a на x и брали среднее арифметическое чисел x и a/x.

Первые общие утверждения о тождественных преобразованиях встречаются у древнегреческих математиков, начиная с VI в. до н.э. Среди математиков Древней Греции было принято выражать все алгебраические утверждения в геометрической форме. Вместо сложения чисел говорили о сложении отрезков, произведение двух чисел истолковывали как площадь прямоугольника, а произведение трех чисел – как объем прямоугольного параллелепипеда. Алгебраические формулы принимали вид соотношений между площадями и объемами. Например, говорили, что площадь квадрата, построенного на сумме двух отрезков, равна сумме площадей квадратов, построенных на этих отрезках, увеличенной на удвоенную площадь прямоугольника, построенного на этих отрезках. С того времени и идут термины «квадрат числа» (т.е. произведение величины на самое себя), «куб числа», «среднее геометрическое». Геометрическую форму приняло у греков и решение квадратных уравнений – они искали стороны прямоугольника по заданным периметру и площади.

Большинство задач решалось в Древней Греции путем построений циркулем и линейкой (см. Геометрические построения). Но не все задачи поддавались такому решению. Например, «не решались» задачи удвоения куба, трисекции угла, задачи построения правильного семиугольника (см. Классические задачи древности). Они приводили к кубическим уравнениям вида x3 = 2, 4x3 - 3x = a и x3 + x2 - 2x - 1 = 0 соответственно. Для решений этих задач был разработан новый метод, связанный с отысканием точек пересечения конических сечений (эллипса, параболы и гиперболы).

Геометрический подход к алгебраическим проблемам сковывал дальнейшее развитие науки, так как, например, нельзя было складывать величины разных размерностей (длины и площади или площади и объемы), нельзя было говорить о произведении более чем трех множителей и т.д. Отказ от геометрической трактовки наметился у Диофанта Александрийского, жившего в III в. В его книге «Арифметика» появляются зачатки буквенной символики и специальные обозначения для степеней неизвестного вплоть до 6-й. Были у него и обозначения для степеней с отрицательными показателями, обозначения для отрицательных чисел, а также знак равенства (особого знака для сложения еще не было), краткая запись правил умножения положительных и отрицательных чисел. На дальнейшее развитие алгебры сильное влияние оказали разобранные Диофантом задачи, приводящие к сложным системам алгебраических уравнений, в том числе к системам, где число уравнений было меньше числа неизвестных. Для таких уравнений Диофант искал лишь положительные рациональные решения (см. Диофантовы уравнения).

С VI в. центр математических исследований перемещается в Индию и Китай, страны Ближнего Востока и Средней Азии. Китайские ученые разработали метод последовательного исключения неизвестных (см. Неизвестных исключение) для решения систем линейных уравнений, дали новые методы приближенного решения уравнений высших степеней. Индийские математики использовали отрицательные числа и усовершенствовали буквенную символику. Однако лишь в трудах ученых Ближнего Востока и Средней Азии алгебра оформилась в самостоятельную ветвь математики, трактующую вопросы, связанные с решением уравнений. В IX в. узбекский математик и астроном Мухаммед ал-Хорезми написал трактат «Китаб аль-джебр валь-мука-бала», где дал общие правила для решения уравнений первой степени. Слово «аль-джебр» (восстановление), от которого новая наука алгебра получила свое название, означало перенос отрицательных членов уравнения из одной его части в другую с изменением знака. Ученые Востока изучали и решение кубических уравнений, хотя не сумели получить общей формулы для их корней.