Содержание хлорофилла иногда предлагается считать за одну из основных продукционных характеристик природных экосистем (точнее ассимиляционное число, т. е. продуктивность на 1 г хлорофилла, выраженная в граммах кислорода за час). И для водных, и для наземных экосистем этот показатель является одним из наиболее устойчивых.
Может быть, еще ярче проявляется эта важнейшая особенность биосистем — функциональное сходство при различиях видового состава — при изучении суммарной биологической активности почв. Несмотря на явные различия в составе организмов, результирующая активность определенного горизонта, слоя или даже типа почвы остается примерно одинаковой. То же можно отнести и к дыханию, т. е. выделению углекислоты. И все это имеет место, несмотря на сложную пространственную микроочаговость почвенных ценозов. Такой микроочаг (0,05–5 мм в диаметре) иногда включает и автотрофный компонент; тогда он служит реальной природной структурой, соответствующей представлению о простейшей микробной экосистеме. Таким образом, в природной обстановке уже в пределах 3–5 мм складываются сложные сообщества, осуществляющие круговорот! И такие сообщества относительно устойчивы по функционированию.
Крупные экосистемы воды и суши с точки зрения структурной организации и наличия имеющихся видов трудно объединить по сходству. Возможно, что ни одного вида, общего для таких экосистем, и не удастся отыскать. Но с точки зрения функционирования, сукцессионной динамики и эволюции они во многом схожи. По крайней мере эволюция в пределах разных групп экосистем может количественно характеризоваться ростом эффективности использования солнечной энергии.
Из-за низкой плотности и рассеянности потока квантов солнечного излучения даже в сбалансированных ценозах используется на фотосинтез около 1% падающего потока, а в целом по биосфере — ниже 0,5%. Это кажется очень малым, но мы теперь уже знаем, как непросто живым экосистемам в условиях нехватки вещества производить его всевозможные циклы. Мы уже описывали одно из удивительнейших чудес природы — растение, которое способно на огромную высоту навстречу солнечному лучу поднимать растворы необходимых солей, чтобы добыть энергию себе и последующим звеньям, поставляющим эти соли растению в круговороте.
Зато с каждым последующим звеном коэффициент использования энергии повышается, травоядные животные используют 10—15% от их кормовой базы, а хищники — до 30%. Поскольку консументы берут около 10% энергии растений, то, как отмечает С. С. Шварц [1980], часто делается вывод о том, что не энергетические ресурсы лимитируют развитие. Однако более тонкие наблюдения говорят, что такие выводы надо использовать с осторожностью. Оказывается, энергетический баланс животных очень напряжен. Поддержание энергетического баланса может рассматриваться как основа адаптаций.
Однако нельзя отводить растениям слишком пассивную роль. Живая природа более изобретательна, чем мы склонны считать. Одним из ярких примеров этому может служить увеличение захвата энергии растениями в эволюции. Если первичный бактериальный фотосинтез был связан с энергетически низкой длинноволновой частью спектра солнечного излучения, то современные зеленые растения используют наибольший возможный поток солнечной энергии. Считающийся более древним бактериохлорофилл имеет максимум поглощения между 800 и 900 нм, где поток солнечной энергии существенно меньше.
Говоря о действии ЭПЭР в биосфере, обратимся к выводам теоретиков. В обстоятельном труде «Самоорганизация в неравновесных системах» Г. Николис и И. Пригожин [М., 1979] затрагивают аспекты эволюции экосистем. Рассматривая вопросы устойчивости системы против структурной флуктуации с новой функцией (что-то типа активного мутанта в популяции), авторы приходят к выводу, что «в качестве движущей силы эволюции следует рассматривать энергетическую диссипацию» и что «процессы эволюции приводят к усилению эксплуатации окружающей среды» (с. 456). Обсуждавшийся нами энергетический принцип достаточно полно и точно соответствует этим выводам.