Рис. 12. Изменение размеров (амплитуда) геномов животных в эволюции [по Айала, 1984, модифицировано]. Крестиком отмечено положение человека.
Следует напомнить, что наше рассуждение относилось к абсолютным значениям размеров геномов. И тут нельзя забывать о том впечатляющем факте, что геномы эукариот в сотни, а то и в тысячи раз больше геномов прокариот (см. начало этого параграфа). Например, в клетке млекопитающего содержится приблизительно в 1000 раз больше ДНК, чем в клетке хорошо изученной генетиками кишечной палочки. Абсолютное увеличение налицо. Поговорим теперь об относительных размерах геномов про- и эукариотных клеток.
2. По-видимому, доля ДНК в любой клетке может считаться несомненной характеристикой ее структурного компонента. Можно также полагать, что и содержание РНК в клетке коррелирует с ее энергетической нагрузкой по структуре, так как работающие гены остаются генами, т. е. все же это — единицы структуры, хотя и управляющие через ферменты функционированием клетки. Тогда суммарное содержание нуклеиновых кислот в клетке можно принять за ее базальную структурную часть, а их долю по отношению к общей массе клетки можно полагать за показатель отягощения клетки структурной частью (явно структурная часть биомассы). Приведем данные по относительному содержанию нуклеиновых кислот в клетках разных типов (рис. 13). Обращает на себя внимание сильное «отягощение» прокариотных клеток структурными компонентами: до 18% веса кишечной палочки могут составлять нуклеиновые кислоты. Большую часть из них представляют РНК, и их доля естественным образом возрастает с увеличением скорости роста или уменьшением длительности поколения, т. е. с возрастанием белоксинтезирующей активности клетки. Но и доля ДНК в клетках высших организмов (отмечена штриховой линией на рис. 13) тоже ниже по сравнению с прокариотными клетками и относительно быстро растущими одноклеточными эукариотами (дрожжами и хлореллой).
Рис. 13. Относительное содержание нуклеиновых кислот (РНК+ДНК) в клетках разных типов.
Прокариоты: 1 — кишечная палочка, 2 — водородные бактерии, 3 — светящиеся бактерии; одноклеточные эукариоты: 4 — кормовые дрожжи, 5 — микроводоросль хлорелла; мышечные ткани многоклеточных эукариот: 6 — рыб, 7 — млекопитающих.
Относительное снижение доли нуклеиновых кислот в клетках при прогрессивной эволюции автоматически означает, что энергетический поток на единицу генетической структуры увеличивается. А с учетом удлинения времени жизни структур Ки.р. возрастает дополнительно. Вот почему прокариоты имеют более низкие показатели энергетической интенсивности по сравнению с эукариотами, особенно с млекопитающими, хотя абсолютная скорость их развития гораздо выше. Просто их высокие скорости трансформации энергии соответствуют гораздо большим величинам работающих биомасс; отсюда и каждая единица структуры менее эффективна энергетически (согласно ЭПИР).
Таким образом, можно сделать нетривиальное предположение, что с ходом прогрессивной эволюции имеет место относительное упрощение биологической структуры. Методологически это означает, что принцип простоты поддается экспериментальной проверке в измерениях развития биологических систем. (Это очень уж отдает крамолой: выводить принцип простоты из биологии, а не из физики, например, где он должен быть более очевидным.) Тем не менее в экспериментах с эволюционными машинами можно убедиться, как отбираются наиболее простые структуры, выполняющие определенные функции, в частности, по энергетике.
Особо оговоримся, что в данном случае мы затрагиваем только энергетические показатели развития, т. е. анализ поневоле односторонний. Например, оценивая в целом эволюцию генома, следует учитывать такие сажные изменения его характеристик, как увеличение надежности или повышение ценности кодируемой информации; правда, последнее трудно интерпретируется. Можно говорить, что эволюция генома от прокариот к эукариотам и далее до человека шла не на увеличение структуры генома, а на повышение качества его функционирования, что находится в хорошем соответствии с энергетическим подходом. Поскольку информация пропорциональна логарифму разнообразия то небольшое увеличение генома позволяет кодировать гораздо большее количество структур. Совершенствование систем регуляции, энергетически очень недорогое, может давать многое для победы в конкурентной борьбе. Становится понятным, почему по структурным генам человек и шимпанзе так удивительно схожи, более 99% структурных генов у них одинаковы. Основная разница заключается в совершенствовании регуляторных функций генома.