Для любого изменения сложившейся ситуации требуется приложить усилия. Это, кажется, понятно любому. Чтобы сдвинуть предмет с места, необходимо приложить усилия. Чтобы остановить движущийся предмет, тоже нужно приложить усилия — чтобы понять это, достаточно попробовать бросить или поймать бейсбольный мяч.
Таким образом, любое изменение состояния, описанного в первом законе Ньютона, любое изменение скорости предмета или направления его движения является ускорением, и для его совершения требуется приложение силы. Каждый знает, что быстро летящий мяч поймать труднее, чем летящий медленно, и что бросить мяч так, чтобы он летел быстро, тоже сложнее. Однако каждый знает и то, что тяжелый предмет труднее остановить (и наоборот — сдвинуть с места), чем легкий. Гораздо легче остановить рукой мячик для настольного тенниса, чем летящий с такой же скоростью бейсбольный мяч. Свойство тела, характеризующее его способность ускоряться под действием заданной силы, называется «массой». Первым ясное представление о массе высказал Ньютон. Чем больше масса, тем меньшее ускорение может произвести заданная сила.
Общее представление о действии некоторой силы мы можем получить и из бытового опыта, но только благодаря количественным измерениям, произведенным Галилеем, Ньютон смог сформулировать свой второй закон, гласящий: «Сила, прилагаемая к телу, приводит к ускорению этого тела, прямо пропорциональному величине приложенной силы и обратно пропорциональному массе тела». Математическим языком это выражается так: а = f/m, или f = та, где f — сила, а — ускорение, а m — масса.
Луна хоть и движется непрерывно, но траектория ее движения — не прямая, а замкнутая кривая вокруг Земли. Скорость Луны подвергается постоянному ускорению, поскольку направление ее движения постоянно меняется, значит, на нее столь же постоянно должна действовать некая сила. Поскольку эта сила изменяет направление движения Луны в сторону Земли, то логично сделать вывод, что источник этой силы тоже находится где-то на Земле.
Ньютон сумел показать, что на Луну в ее небесных странствиях действует та же сила, что и на падающее на землю с постоянным ускорением яблоко. Таким образом, стало ясно, небесные тела управляются теми же законами природы, что действуют и здесь, на Земле, — стало быть, законы эти едины для всей Вселенной (по крайней мере, насколько мы ее знаем).
Ньютон предположил, что сила притяжения, влекущая яблоко к земле с равномерным постоянным ускорением и удерживающая Луну на замкнутой орбите вокруг Земли, является частным проявлением общего закона, по которому любой предмет во Вселенной притягивает все остальные предметы во Вселенной (закон всемирного тяготения).
Тогда ученый на основе выведенных им законов (включая третий, гласящий, что «каждое действие встречает равное ему по силе противодействие», пример практического применения которого мы видим всякий раз, когда в космос запускается очередная ракета) рассчитал, что такая всеобщая сила притяжения должна быть прямо пропорциональной массам обоих задействованных тел и обратно пропорциональной квадрату расстояния между их центрами:
Оказалось, что открытый Ньютоном закон всемирного тяготения хорошо объясняет движение различных небесных тел. С его помощью представление о Вселенной стало простым и понятным. Для современной науки это стало важным достижением, навсегда освободившим человечество от благоговения перед достижениями древнегреческих авторов.
Правда, в XX веке была выдвинута другая, более сложная теория строения Вселенной, лучше объясняющая некоторые явления, относящиеся к сфере сверхмалых и сверхбольших частиц. Изменения произошли и в самой концепции силы и притяжения, а также и в концепциях движения, пространства и времени. Тем не менее для подавляющего большинства практических целей вполне достаточно и теории Ньютона.
После того как представление о количественном измерении движения прочно закрепилось в научном сознании, родился закономерный вывод, что работа тоже должна поддаваться измерению. Раз приложение к телу силы выводит его из «естественного состояния», то проще всего показалось измерить количество проделанной работы, умножив приложенную силу на то расстояние, на которое тело было перемещено против какого бы то ни было сопротивления.
Для того чтобы измерять такие явления, как сила и работа, требовалось введение новых, специализированных единиц измерения. Сами эти единицы многим незнакомы, но они выводятся из всем известных единиц измерения массы, расстояния и времени. Ведь все знают, что расстояние измеряется в метрах, сантиметрах и километрах, а масса — в граммах, килограммах и тоннах.