Выбрать главу

3. 69-й симпозиум

С годами выявилось несколько универсальных принципов, общих для всех эпигенетических явлений, и эти принципы определяют экспериментальные подходы в наших попытках понять детали. Во-первых, различия между двумя фенотипическими состояниями («ВКЛЮЧЕНО» и «ВЫКЛЮЧЕНО») всегда коррелируют с соответствующим различием структуры в ключевой регуляторной точке — форма транслируется в функцию. Отсюда, основная задача заключается в идентификации этих двух различных структур, компонентов, из которых эти структуры состоят, и композиционных различий между ними Во-вторых, эти различающиеся структуры должны обладать способностью поддерживать и воспроизводить себя в окружении конкурирующих факторов и сил энтропии. Таким образом, каждая структура нуждается в самоусилении, или в контурах положительной обратной связи, обеспечивающих ее поддержание и воспроизведение на протяжении многих клеточных делений; в некоторых случаях, таких как инактивация Х-хромосомы, это время оказывается сравнимым со временем жизни

На 69-м симпозиуме продолжалось уточнение многих механистических принципов, установленных на предыдущих симпозиумах, но были и новые разработки. Чтобы поместить эти новые разработки в наш контекст, важно отметить, что важное влияние на эпигенетику оказали еще два открытия. Одним было открытие РНК-интерференции и родственных, базирующихся на РНК, механизмах регуляции. Другим было открытие механизмов, лежащих в основе гипотезы прионов. За последнее десятилетие обе эти области быстро развивались, и некоторые из этих исследований внесли вклад в наши знания об эпигенетике, базирующейся на хроматине, тогда как другие наметили новые перспективы в проблеме наследственной передачи фенотипов.

Многие достижения, представленные на этом симпозиуме, детально описываются в разных главах этой книги, поэтому я воздержусь здесь от обсуждения этих тем Однако я затрону несколько успешных и перспективных исследований, которые привлекли мое воображение и которые не освещаются на этих страницах В конце я попытаюсь сформулировать наиболее важные концепции, вынесенные мною из этого симпозиума.

3.1. Гипотеза гистонового кода

В ходе рассмотрения модификаций гистонов и их потенциального информационного содержания состоялось много дискуссий относительно «гипотезы гистонового кода» (Jenuwein and Allis 2001). Большинство этих споров, в которых я принимал участие или о которых мне рассказывали, были неформальными и довольно оживленными. Сторонники «кода» приводили такие примеры, как триметилирование гистона H3 по К9 и его повышенное сродство к классу НР1 белков гетерохроматина (Jenuwein and Allis, 2001). Их противники приводили биохимические и генетические данные о том, что на связывание с ДНК или на фенотип существенно влияет суммарный заряд на аминотерминальном «хвосте» гистона Н4, независимо от того, где этот заряд расположен (Megee et al., 1995; Zheng and Hayes, 2003)

Грюнштейн (Grunstein) представил данные, включавшие анализ модификаций (ацетилирования) гистонов и связанных с хроматином белков во всем геноме S. cerevisiae с использованием специфических антител и метода ChlP-Chip (Millar et al., 2004). Он сделал акцент на ассоциированном с ацетилированием H4K16 эпигенетическом переключении к связыванию или несвязыванию определенных белков хроматина, поддерживая таким образом гипотезу гистонового кода. Некоторые из его данных, хотя они и не обсуждались, по-видимому, свидетельствуют в пользу сообщений других исследователей о том, что для большой части генома нет корреляции между специфичесикми модификациями гистонов и экспрессией генов (т. е. все активные гены имеют одинаковые метки, и эти метки отсутствуют на неактивных генах) (Schubert et al., 2004; Dion et al., 2005). Учитывая всю совокупность этих результатов, я подозреваю, что в качестве механизмов регулирования структуры хроматина и экспрессии генов обычно используются и специфические модификации, и влияние общего заряда

3.2. Динамический «молчащий» хроматин

Я должен признаться, что, основываясь на статических изображениях гетерохроматина и на рефрактерной природе «молчащего» хроматина, я был убежден, что, однажды установившись, гетерохроматиновое состояние остается прочным, как гранит. Только когда наступает время репликации ДНК, эта непробиваемая структура становится релаксированной. Думая таким образом, я неразумно игнорировал принципы равновесной динамики, с которыми познакомился в курсе химии. Однако к этим урокам заставили возвратиться исследования «молчащего» хроматина и гетерохроматина, где было показано, что белки сайленсинга у дрожжей (Sir3) и белки гетерохроматина в клетках млекопитающих (НР1) находятся в состоянии динамического равновесия — эти белки быстро обмениваются между гетерохроматином и растворимым компартментом — даже когда хроматин находится в своем наиболее непроницаемом состоянии (Cheng and Gartenberg, 2000; Cheutin et al., 2003). Осознание динамических качеств хроматина вынудило меня иначе взглянуть на то, каким образом поддерживается и воспроизводится его эпигенетическое состояние. Этот взгляд предполагает, что в некоторых системах эпигенетическое состояние может быть ревертировано в любое время, а не только в ходе репликации ДНК. Отсюда мы можем заключить, что для «молчащего» хроматина механизмы усиления и воспроизведения должны функционировать постоянно.