Выбрать главу

Rubin G.M., HazelriggT., Karess R.E., Laski F.A., Laverty T., Levis R., Rio D.C., Spencer F.A., and Zuker C.S. 1985. Germ line specificity of P-element transposition and some novel patterns of expression of transduced copies of the white gene. Cold Spring Harbor Symp. Quant. Biol. 50: 329–335.

Rudkin G.T. and Tartof K.D. 1974. Repetitive DNA in polytene chromosomes of Drosophila melanogaster Cold Spring Harbor Symp. Quant. Biol. 38: 397–403.

Schubeler D., MacAlpine D.M., Scalzo D., Wirbelauer C., Kooper-berg C, van Leeuwen R, Gottschling D.E., O’Neill L.P., Turner B.M., Delrow J., et al. 2004. The histone modification pattern of active genes revealed through genome-wide chromatin analysis of a higher eukaryote. Genes Dev. 18: 1263–1271.

Schultz J. 1956. The relation of the heterochromatic chromosome regions to the nucleic acids of the cell. Cold Spring Harbor Symp. Quant. Biol. 21: 307-328

Selker E.U., Richardson G.A., Garrett-Engele P.W., Singer M.J., and Miao V. 1993. Dissection of the signal for DNA methylation in the ζ-η) region of Neurospora. Cold Spring Harbor Symp. Quant. Biol. 58: 323–329.

Shapiro L.J. and Mohandas T. 1983. DNA methylation and the control of gene expression on the human X chromosome Cold Spring Harbor Symp. Quant. Biol. 47: 631–637.

Shi Y., Lan E., Matson C., Mulligan P., Whetstine J.R., Cole P.A., and Casero R.A. 2004. Histone demethylation mediated by the nuclear amine oxidase homolog LSD1. Cell 119: 941–953.

Si K., Lindquist S., and Kandel E. 2004. A possible epigenetic mechanism for the persistence of memory. Cold Spring Harbor Symp. Quant. Biol. 69: 497–498.

Solter D., Aronson J., Gilbert S.F, and McGrath J. 1985. Nuclear transfer in mouse embryos: Activation of the embryonic genome. Cold Spring Harbor Symp. Quant. Biol. 50: 45–50.

Swift H. 1974. The organization of genetic material in eukaryotes: Progress and prospects. Cold Spring Harbor Symp. Quant. Biol. 38: 963–979.

Thompson J.S., Hecht A., and Grunstein M. 1993. Histones and the regulation of heterochromatin in yeast. Cold Spring Harbor Symp. Quant. Biol. 58: 247–256.

Tilghman S.M., Bartolomei M.S., Webber A.L., Brunkow M.E., Saam J., Leighton P.A., Pfeifer K., and Zemel S. 1993. Parental imprinting of the H19 and Igf2 genes in the mouse. Cold Spring Harbor Symp. Quant. Biol. 58: 287–295.

Vazquez J., Farkas G., Gaszner M., Udvardy A., Muller M., Hag-strom K., Gyurkovics H., Sipos L., Gausz J., Galloni M., et al. 1993. Genetic and molecular analysis of chromatin domains. Cold Spring Harbor Symp. Quant. Biol. 58: 45–54.

Wade P.A., Jones P.L., Vermaak D., Veenstra G.J., Imhof A., Sera T., Tse C., Ge H., Shi Y.B., Hansen J.C., and Wolffe A.P. 1998. Histone deacetylase directs the dominant silencing of transcription in chromatin: Association with MeCP2 and the Mi-2 chromodomain SWI/SNF ATPase. Cold Spring Harbor Symp. Quant Biol. 63: 435–445.

Wang Y., Wysocka J., Perlin J.R., Leonelli L., Allis C.D., and Coonrod S.A. 2004. Linking covalent histone modifications to epigenetics: The rigidity and plasticity of the marks. Cold Spring Harbor Symp. Quant. Biol. 69: 161–169.

Weintraub H. 1974. The assembly of newly replicated DNA into chromatin. Cold Spring Harbor Symp. Quant. Biol. 38: 247–256.

Weintraub H. 1993. Summary: Genetic tinkering local problems, local solutions. Cold Spring Harbor Symp. Quant. Biol. 58: 819–836.

Weintraub H., Flint S.J., Leffak I.M., Groudine M., and Grainger R.M. 1978. The generation and propagation of variegated chromosome structures. Cold Spring Harbor Symp. Quant. Biol. 42: 401–407.

Wickner R.B., Edskes H.K., Rosj> E.D., Pierce M.M., Baxa U., Brachmann A., and Shewmaker F. 2004a. Prion genetics: New rules for a new kind of gene. Annu. Rev. Genet. 38: 681–707.

Wickner R.B., Edskes H.K., Ross E.D., Pierce M.M., Shewmaker P., Baxa U., and Brachmann A. 2004b. Prions of yeast are genes made of protein: Amyloids and enzymes Cold Spring Harbor Symp. Quant. Biol. 69: 489–496.

Willard H.F., Brown C.J., Carrel L., Hendrich B., and Miller A. P. 1993. Epigenetic and chromosomal control of gene expression: Molecular and genetic analysis of X chromosome inactivation. Cold Spring Harbor Symp. Quant. Biol. 58: 315–322.

Wood W.B., Meneely P., Schedin P., and Donahue L. 1985. Aspects of dosage compensation and sex determination in Caenorhabditis elegans. Cold Spring Harbor Symp. Quant. Biol. 50: 575–583. Yarmolinsky M.B. 1981. Summary. Cold Spring Harbor Symp. Quant. Biol. 45: 1009–1015.

Zheng C., and Hayes J.J. 2003. Structures and interactions of the core histone tail domains. Biopolymers 68: 539–546.

Глава 2. Краткая история эпигенетики

Gary Felsenfeld

National Institute of Diabets and Digestive and Kidney, National Institute of Heath, Bethesda, Maryland 20892-054

1. Введение

История эпигенетики связана с исследованиями эволюции и развития. Но за последние 50 лет значение самого термина «эпигенетика» претерпело эволюцию, сопоставимую с резко возросшим пониманием молекулярных механизмов, лежащих в основе регуляции экспрессии генов у эукариот. Наше современное рабочее определение выглядит следующим образом: «Изучение митотически и (или) мейотически наследуемых изменений в генной функции, которые нельзя объяснить изменениями в нуклеотидной последовательности ДНК» (Riggs et al., 1996). Однако до 1950-х годов слово «эпигенетика» использовали в совершенно другом смысле — для обозначения всех событий развития, ведущих от оплодотворенной зиготы к зрелому организму, то есть всех регуляторных процессов, которые, начиная с генетического материала, формируют конечный продукт (Waddington 1953). Эта концепция берет свое начало в гораздо более ранних исследованиях в области клеточной биологии и эмбриологии, начиная с конца XIX столетия, которые заложили фундамент нашего сегодняшнего понимания взаимоотношений между генами и развитием. Долгое время среди эмбриологов шли горячие споры о природе и локализации компонентов, ответственных за реализацию плана развития организма. В своих попытках осмыслить большое число остроумных, но в конечном счете противоречивых экспериментов по манипулированию с клетками и зародышами эмбриологи разделились на две школы: на тех, кто думал, что каждая клетка содержит преформированные элементы, которые в ходе развития лишь увеличиваются в размерах, и тех, кто полагал, что этот процесс включает химические реакции между растворимыми компонентами, которые и реализуют сложный план развития. Эти воззрения сфокусировались на относительном значении ядра и цитоплазмы в процессе развития. Вслед за открытием существования хромосом, сделанным Флемингом в 1879 году, опыты, проведенные многими исследователями, в том числе Вильсоном и Бовери, дали надежное доказательство того, что программа развития находится в хромосомах. В конечном счете, Томас Гент Морган (Morgan, 1911) привел наиболее убедительные доказательства этой идеи, продемонстрировав генетическое сцепление нескольких генов Drosophila с Х-хромосомой.