Выбрать главу

Doskocil J. and Sorm F. 1962. Distribution of 5-methylcytosine in pyrimidine sequences of deoxyribonucleic acids. Biochim. Biophys. Acta 55: 953–959.

Durrin L. K., Mann R. K., Kayne P. S., and Grunstein M. 1991. Yeast histone H4 N-terminal sequence is required for promoter activation in vivo. Cell 65: 1023–1031.

Grimes G. W. and Aufderheide K. J. 1991. Cellular aspects of pattern formation: The problem of assembly. Monogr. Dev. Biol. 22: 1-94.

Hall I. M., Shankaranarayana C. D., Noma K., Ayoub N., Cohen A., and Grewal S. I. 2002. Establishment and maintenance of a heterochromatin domain. Science 297: 2215–2218.

Hannah A. 1951 Localization and function of heterochromatin in Drosophila melanogaster. Adv. Genet. 4: 87-125.

Hark A. T., Schoenherr C. J., Katz D. J., Ingram R. S., Levorse J. M., andTilghman S. M. 2000. CTCF mediates methylation-sensitive enhancer-blocking activity at the H19/Igf2 locus. Nature 405: 486–489.

Hershey A. D. and Chase M. 1952. Independent functions of viral protein and nucleic acid in growth of bacteriophage. J. Gen. Physiol. 36: 39–56.

Holliday R. and Pugh J. E. 1975. DNA modification mechanisms and gene activity during development. Science 187: 226–232.

Jablonka E. and Lamb M. J. 1995. Epigenetic inheritance and evolution: The Lamarckian dimension Oxford University Press, New York, p. 82.

Jorgensen R. 1993. The germinal inheritance of epigenetic information in plants. Philos. Trans. R. Soc. Lond. B Biol. Sci. 339: 173–181.

Komberg R. D. and Thomas J. 0. 1974. Chromatin structure; oligomers of the histones. Science 184: 865–868.

Lachner M., O’Carroll D., Rea S., Mechtler K., and Jenuwein T. 2001. Methylation of histone H3 lysine 9 creates a binding site for HP1 proteins. Nature 410: 116–120.

Laskey R. A. and Gurdon J. B. 1970. Genetic content of adult somatic cells tested by nuclear transplantation from cultured cells. Nature 228: 1332–1334.

Luger K., Mader A. W., Richmond R. K., Sargent D. F., and Richmond T. J. 1997. Crystal structure of the nucleosome core particle at 2. 8 E resolution. Nature 389: 251–260.

Lyon M. F. 1961. Gene action in the X-chromosome of the mouse. Nature 190: 372–373.

McClintock B. 1965. The control of gene action in maize. Brookhaven Symp. Biol. 18: 162–184.

McKittnck E., Gafken P. R., Ahmad K., and HenikoffS. 2004. Histone H3. 3 is enriched in covalent modifications associated with active chromatin. Proc. Natl. Acad. Sci. 101: 1525–1530.

Morgan T. 1911. An attempt to analyze the constitution of the chromosomes on the basis of sex-linked inheritance in Drosophila. J. Exp. Zool. 11: 365–414. Muller H. J. 1930. Types of visible variations induced by X-rays in Drosophila. J. Genet. 22: 299–334.

Nakayama J., Rice J. C., Strahl B. D., Allis C. D., and Grewal S. I. 2001. Role of histone H3 lysine 9 methylation in epigenetic control of heterochromatin assembly. Science 292: 110–113.

Novick A. and Weiner M. 1957. Enzyme induction as an all-or-none phenomenon. Proc. Natl. Acad. Sci. 43: 553–566.

Ohno S., Kaplan W. D., and Kinosita R. 1959. Formatipn of the sex chromatin by a single X-chromosome in liver cells of Rattus norvegicus. Exp. Cell Res. 18: 415–418.

Paul J. and Gilmour R. S. 1968. Organ-specific restriction of transcription in mammalian chromatin. J. Mol. Biol. 34: 305–316.

Pazin M. J., Kamakaka R. T., and Kadonaga J. T. 1994. ATP-dependent nucleosome reconfiguration and transcriptional activation from preassembled chromatin templates. Science 266: 2007–2011.

Peterson C. L. and Herskowitz 1. 1992. Characterization of the yeast SWI1, SWI2, and SWI3 genes, which encode a global activator of transcription. Cell 68: 573–583.

Ptashne M. 1992. A genetic switch: Phage X and higher organisms, 2nd edition. Blackwell Science, Maiden, Massachusetts and Cell Press, Cambridge, Massachusetts.

Richmond T. J. Finch J. T., Rushton B., Rhodes D., and Klug A. 1984. Structure of the nucleosome core particle at 7 E resolution. Nature 311: 532–537.

Riggs A. D. 1975. X inactivation, differentiation, and DNA methylation. Cytogenet. Cell Genet. 14: 9-25.

Riggs A. D. and Porter T. N. 1996. Overview of epigenetic mechanisms. In Epigenetic mechanisms of gene regulation (ed. V. E. A. Russo et al.), pp. 29–45. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York.

Riggs A. D., Martienssen R. A., and Russo V. E. A. 1996. Introduction. In Epigenetic mechanisms of gene regulation (ed. V. E. A. Russo et al.), pp. 1–4. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York.

Shykind B. M., Rohani S. C., O’Donnell S., Nemes A., Mendelsohn M., Sun Y., Axel R., and Bamea G. 2004. Gene switching and the stability of odorant receptor gene choice. Cell 117: 801-815.

Stam M., Belele C, Dorweiler J., and Chandler V. 2002. Differential chromatin structure with a tandem array 100 kb upstream of the maize bl locus is associated with paramutation. Genes Dev. 16: 1906–1918.

Stedman E. and Stedman E. 1950. Cell specificity of histones Nature 166: 780–781.

Sturtevant A. 1913. The linear arrangement of six sex-linked factors in Drosophila, as shown by their mode of association. J. Exp. Zool. 14: 43–59.

Tsukiyama T. and Wu C. 1995. Purification and properties of an ATP-dependent nucleosome remodeling factor. Cell 83: 1011–1020.

Waddington C. H. 1953. Epigenetics and evolution. Symp. Soc. Exp. Biol. 7: 186–199.

Wallis J. W., Hereford L., and Grunstein M. 1980. Histone H2B genes of yeast encode two different proteins. Cell 22: 799–805.

Wysocka J., Swigut T., Milne T. Dou Y., Zhang X., Burlingame A., Roeder R., Brivanlou A., and Allis CD. 2005. WDR5 associates with histone H3 methylated at K4 and is essential for H3 K4 methylation and vertebrate development. Cell 121: 859–872.

Глава 3. Общий обзор и основные понятия

С. David Allis, Thomas Jenuwein, and Danny Reinberg

The Rockefeller University, New York; ‘Research Institute of Molecular Pathology, Vienna, Austria; UMDNJ-Robert Wood Johnson Medical School, Piscataway, New Jersey

Общее резюме

Секвенирование ДНК генома человека и геномов многих модельных организмов вызвало в последние несколько лет значительное возбуждение в биомедицинском сообществе и среди обычной публики. Эти генетические «синьки», демонстрирующие общепринятые правила менделевской наследственности, оказываются теперь легко доступными для тщательного анализа, открывая дверь для более глубокого понимания биологии человека и его болезней. Эти знания порождают также новые надежды на новые лечебные стратегии. Тем не менее, многие фундаментальные вопросы остаются без ответа. Например, как осуществляется нормальное развитие, при том что каждая клетка обладает одной и той же генетической информацией и все же следует своим особым путем развития с высокой временной и пространственной точностью? Каким образом клетка решает, когда ей делиться и дифференцироваться, а когда сохранять неизменной клеточную идентичность, реагируя и проявляя себя согласно своей нормальной программе развития? Ошибки, случающиеся в вышеупомянутых процессах, могут вести к возникновению таких болезненных состояний, как рак. Закодированы ли эти ошибки в ошибочных «синьках», которые мы унаследовали от одного или обоих родителей, или же имеются какие-то другие слои регуляторной информации, которые не были правильно считаны и декодированы?