Выбрать главу

Атомная эпоха сопровождалась интенсивным экономическим ростом. На протяжении 1950-х и 1960-х годов ВВП США ежегодно прирастал на 6-10 %, а потребность в электроэнергии росла в среднем на 7 % в год. Несмотря на стремительные темпы строительства угольных теплоэлектростанций, прогнозы показывали, что к концу XX века они перестанут справляться с неуклонно возрастающими энергетическими потребностями. В долгосрочной перспективе оптимальной альтернативой представлялась атомная энергетика. По экспертным оценкам 1967 года, к 2000 году доля АЭС в составе генерирующих мощностей США должна была достигнуть 56 %. Однако всплеск инфляции, а затем нефтяной кризис начала 1970-х вверг американскую экономику в кризис, и потребность в бурном развитии энергосетей отпала.

Сегодня больше всего шансов добиться лидерства в энергетике у солнечных электростанций. А ведь солнечные батареи – не что иное, как побочный продукт космической эры. Лаборатории Белла[50] представили первые работающие батареи на кремниевых фотоэлементах в 1954 году, а уже в 1958-м НАСА запустило спутник «Авангард-1»[51], работавший на солнечной энергии.

И хотя технология преобразования света в электроэнергию была разработана еще в доатомную эру, а солнечные батареи сконструированы в 1950-х годах[52], лишь в наши дни солнечные электростанции стали конкурентоспособны по сравнению с традиционными с точки зрения себестоимости энергии. Таким образом, последствия технологического прорыва на волне бума послевоенных десятилетий продолжают давать знать о себе и сегодня, – и это замечательно.

Социальные последствия бума ракетостроения, электроники и ядерной физики

В разгар космической гонки в НАСА официально работало 400 000 человек. Помимо этого, по слухам, НАСА щедро одаривало контрактами 20 000 университетов, научно-исследовательских институтов, промышленных предприятий и иных подрядчиков по всему миру. По некоторым данным, в середине 1960-х 4,5 % работоспособного населения США были тем или иным образом задействованы в работе над проектами освоения космоса. На фоне постоянных колебаний показателей рентабельности различных отраслей это был беспрецедентный период роста.

По сей день Хьюстон (штат Техас)[53] и «космическое побережье» Флориды[54] пожинают долгосрочные плоды инвестиций в космическую программу 1960-х. Вот лишь некоторые результаты инвестиций НАСА в развитие технологий за последние 50 лет:

стеклоткань с тефлоновым покрытием (PTFE) – современный покровный материал;

скафандры и термобелье с жидкостным охлаждением – сегодня эти технологии используются в портативных медицинских приборах для охлаждения организма при лечении ожогов конечностей, рассеянного склероза, повреждений позвоночника, спортивных травм и т. п.;

портативные автономные дыхательные устройства для пожарных НАСА взяты на вооружение пожарными всего мира;

роботизированные искусственные манипуляторы и мышечные приводы, сконструированные НАСА, используются в протезах конечностей нового поколения;

конструкция топливных насосов главного двигателя космических шаттлов положена в основу искусственного сердечного насоса, созданного доктором Майклом Дебейки[55] из Медицинского колледжа Бэйлора в Хьюстоне совместно с инженером Космического центра имени Линдона Джонсона Дэвидом Сосье.

Среди прочих изобретений и технологий, основанных на разработках НАСА, которые мы используем в повседневной жизни, – невидимые брекеты, устойчивые к царапинам линзы, пена Memory Foam[56], инфракрасные датчики температуры, детекторы задымления, беспроводные инструменты, фильтры для очистки воды, износостойкие радиальные шины, светодиоды (LED), химические датчики и алгоритмы для повышения качества и анализа видеоизображений.

Таким образом, атомно-космическая эпоха, при всей глобальности технологических преобразований, не вызвала социальных потрясений, а, напротив, способствовала созданию дополнительных рабочих мест и повышению благосостояния населения.

Эпоха информационных и цифровых технологий (1975–2015)

В основе современных инновационных технологий лежат три основополагающих закона, или принципа. Первый из них – рассмотренный в этой главе закон Мура, два других – сетевой закон Меткалфа Гилдера[57] и закон Крайдера[58], определяющий темпы роста емкости носителей данных. По сути, эти законы описывают три столпа, на которых зиждется развитие современных цифровых технологий. Речь идет о производительности компьютеров, пропускной способности сетей, а также емкости хранилищ данных и скорости обмена информацией с ними. В последнее десятилетие вычислительная техника и телекоммуникации кардинально изменили мир вокруг нас и нас самих.

вернуться

50

Лаборатории Белла – далекий потомок конструкторского бюро, основанного в 1880 году в Вашингтоне Александром Беллом на средства последней в истории премии имени Алессандро Вольта, учрежденной Наполеоном Бонапартом и присуждавшейся Французской академией. Белл получил ее «за изобретение телефона». В период разработки солнечных батарей и изобретения транзисторов (1956) – Bell Telephone Laboratories, Inc. (в совместной собственности AT&T и Western Electric). С января 2016 года, после того как компания несколько раз сменила основных владельцев, – Nokia Bell Labs. См. также примеч. 1 на с. 116. – Примеч. пер.

вернуться

51

«Авангард-1» (англ. Vanguard 1) – искусственный спутник Земли, запущенный 17 марта 1958 года. До середины 1960-х годов передавал на Землю телеметрические данные (благодаря обшивке из солнечных батарей, подзаряжавших литиевые аккумуляторы), позволил уточнить форму Земли и параметры ионосферы. Остается на орбите до сих пор, став самым старым искусственным телом в космосе. – Примеч. пер.

вернуться

52

Первые действующие прототипы фотоэлементов были созданы Чарлзом Фриттсом и Александром Столетовым в конце XIX века. – Примеч. науч. ред.

вернуться

53

В Хьюстоне находится выросший из созданной в ноябре 1958 года Рабочей космической группы НАСА Космический центр имени Линдона Джонсона (англ. The Lyndon B.Johnson Space Center, сокр. JSC). Он занимается разработкой космических кораблей и аппаратов, обучением астронавтов, подготовкой пилотируемых полетов, а также осуществляет управление и контроль над космическими полетами. В Хьюстоне расположены еще полторы сотни организаций и предприятий космической отрасли. – Примеч. пер.

вернуться

54

На восточном побережье Флориды, на острове Мерритт, связанном дамбами и мостами с мысом Канаверал, находится Космический центр имени Джона Кеннеди (англ. John F. Kennedy Space Center) – главный космодром и ЦУП НАСА. – Примеч. пер.

вернуться

55

Майкл Эллис Дебейки (англ. Michael Ellis DeBakey, 1908–2008) – выдающийся американский кардиохирург, один из пионеров создания аппаратов «искусственное сердце». – Примеч. пер.

вернуться

56

Разработанный НАСА материал на основе пенополиуретана. Отличающийся низкой упругостью, он «запоминает» форму и стал популярной основой для ортопедических подушек и матрасов. – Примеч. науч. ред.

вернуться

57

Сформулирован в 1993 году популярным американским экономистом технолого-утопической направленности Джорджем Гилдером (англ. George Gilder, p. 1939) для общего случая. Позже возведен одним из изобретателей технологии пакетной передачи данных по компьютерным сетям (Ethernet) Робертом Меткалфом (англ. Robert Metcalfe, p. 1946) в ранг закономерности, согласно которой полезность сети пропорциональна квадрату числа ее узлов (пользователей). – Примеч. пер.

вернуться

58

Марк Крайдер (англ. Mark Kryder, p. 1943) в бытность вице-президентом по исследованиям и главным инженером одного из ведущих производителей жестких дисков Seagate сформулировал в 2005 году на страницах журнала Scientific American следующее эмпирическое наблюдение: темпы роста емкости и производительности накопителей информации опережают темпы роста производительности компьютеров и ведут к удешевлению хранения информации в пересчете на единицу данных. Плотность записи на магнитные диски удваивается примерно каждые 18 месяцев (см.: http://www.scientificamerican.com/article/kryders-law/). – Примеч. пер.