Выбрать главу

Итак, обратимся к Вселенной Эйнштейна. Время перестает быть независимым параметром; чтобы правильно описать мир, надо говорить о едином пространстве-времени. Утратил свой смысл образ ньютоновских часов, которые с абсолютной точностью как бы отмеряли ход времени в самых отдаленных уголках необъятной Вселенной: течение времени для разных космических объектов оказалось зависимым от того, с какой скоростью эти объекты движутся относительно друг друга.

Немало неожиданностей принесла и квантовая механика. Оказалось, что ход времени нельзя считать абсолютно непрерывным: существуют такие маленькие промежутки времени, для которых само понятие этого хода утрачивает смысл. Продолжительность этих промежутков, которые называют планковским временем — в честь Макса Планка, одного из основоположников квантовой механики, — очень мала, всего 1-43 секунды. При этом масштабе время может останавливаться или даже течь в обратную сторону, утверждают теоретики.

А какое это может иметь значение, могут спросить читатели, разве у нас есть способ добраться когда-нибудь на опыте до таких невообразимо малых промежутков времени? Уже добрались, отвечают физики. Правда, не сразу: сначала теоретики назвали другую величину, тоже очень маленькую: 10-22 секунды. Если время меняется на столь малую величину, то меняются и связанные с ним характеристики пространства, а значит, и энергия — ведь ее величину можно выразить через координаты и время. Причем из теории следует, что, чем меньше время, тем больше величина соответствующей ему энергии.

10 22 секунды — это как раз такая продолжительность времени, при которой энергии хватает, чтобы буквально «из ничего», иными словами, из вакуума возник электрон. Правда, судьба этой частицы-призрака будет незавидной: пройдет еще 10-22 секунды, и он исчезнет, бесследно растворится в породившем его вакууме.

Я так и думал, скажет нетерпеливый читатель, ни до какой опытной проверки тут не добраться! Это верно, но только отчасти. Заметить такую частицу действительно невозможно: слишком непродолжительно время ее жизни, его не хватает, чтобы она успела вступить во взаимодействие с какими-либо другими стабильно существующими элементарными частицами. Поэтому эти ненаблюдаемые частицы, которые в изобилии порождаются вакуумом, физики назвали виртуальными, т. е. возможными.

Однако вакуум буквально «кипит» такими частицами, и хотя никакую из них невозможно обнаружить по отдельности, все вместе, коллективно они в состоянии повлиять на результат опыта. И эти коллективные свойства «призрачных» виртуальных частиц были действительно обнаружены во многих экспериментах. Вот какими странными свойствами, оказывается, обладает время на малых масштабах!

А теперь вспомним о еще более коротком промежутке времени — планковском времени — 10-32 секунд. Какой энергии он соответствует? С помощью формул квантовой механики эту величину подсчитать нетрудно — оказывается, этой энергии достаточно, чтобы из вакуума (из «ничего») возникла Вселенная, подобная нашей. Здесь сходятся интересы обеих физических дисциплин — теории относительности и квантовой механики. Решая уравнения Эйнштейна, наш соотечественник

А. А. Фридман показал, что Вселенная возникла около 10 миллиардов лет назад в результате явления, которое физики назвали Большой Взрыв. А поскольку размеры ее были в эти мгновения микроскопически малыми, то исследовать ее свойства на этой стадии следует с помощью методов квантовой механики.

Большой Взрыв оказался той «точкой отсчета», начиная с которой пошло течение времени, возникла, как иногда говорят, стрела времени. Вот только почему она направлена в одну сторону? Если пространство имеет три измерения, то почему у времени только одно? Разобраться в этом вопросе помогла еще одна физическая дисциплина — термодинамика.

С первым законом этой науки — законом сохранения энергии — знакомы все. Сложнее со вторым. Хотя сформулировать его можно очень просто: ни одна печка не разогреется сама собой, если в ней не зажечь дрова…

Чтобы записать этот закон по-науч-ному, физики ввели понятие особой функции состояния — энтропии. Это очень важная функция, она определяет меру упорядоченности всех процессов, которые протекают в окружающем нас мире. Чем больше беспорядка, хаотичности возникает в результате этих процессов, тем более высокой оказывается величина соответствующей им энтропии.