Выбрать главу

Smithsonian Museum) produced the first scan of a human torso, in 1977.

(As it happens, it was Damadian's own torso.) Once this proof-of-

concept had been thrust before a doubting world, Damadian founded a

production company, and became the father of the MRI scanner

industry.

By the end of the 1980s, medical MRI scanning had become a

major enterprise, and Damadian had won the National Medal of

Technology, along with many other honors. As MRI machines spread

worldwide, the market for CAT-scanning began to slump in comparison.

Today, MRI is a two-billion dollar industry, and Dr Damadian and his

company, Fonar Corporation, have reaped the fruits of success. (Some

of those fruits are less sweet than others: today Damadian and Fonar

Corp. are suing Hitachi and General Electric in federal court, for

alleged infringement of Damadian's patents.)

MRIs are marvelous machines -- perhaps, according to critics, a

little too marvelous. The magnetic fields emitted by MRIs are extremely

strong, strong enough to tug wheelchairs across the hospital floor, to

wipe the data off the magnetic strips in credit cards, and to whip a

wrench or screwdriver out of one's grip and send it hurtling across the

room. If the patient has any metal imbedded in his skin -- welders and

machinists, in particular, often do have tiny painless particles of

shrapnel in them -- then these bits of metal will be wrenched out of the

patient's flesh, producing a sharp bee-sting sensation. And in the

invisible grip of giant magnets, heart pacemakers can simply stop.

MRI machines can weigh ten, twenty, even one hundred tons.

And they're big -- the scanning cavity, in which the patient is inserted,

is about the size and shape of a sewer pipe, but the huge plastic hull

surrounding that cavity is taller than a man and longer than a plush

limo. A machine of that enormous size and weight cannot be moved

through hospital doors; instead, it has to be delivered by crane, and its

shelter constructed around it. That shelter must not have any iron

construction rods in it or beneath its floor, for obvious reasons. And yet

that floor had better be very solid indeed.

Superconductive MRIs present their own unique hazards. The

superconductive coils are supercooled with liquid helium.

Unfortunately there's an odd phenomenon known as "quenching," in

which a superconductive magnet, for reasons rather poorly understood,

will suddenly become merely-conductive. When a "quench" occurs, an

enormous amount of electrical energy suddenly flashes into heat,

which makes the liquid helium boil violently. The MRI's technicians

might be smothered or frozen by boiling helium, so it has to be vented

out the roof, requiring the installation of specialized vent-stacks.

Helium leaks, too, so it must be resupplied frequently, at considerable

expense.

The MRI complex also requires expensive graphic-processing

computers, CRT screens, and photographic hard-copy devices. Some

scanners feature elaborate telecommunications equipment. Like the

giant scanners themselves, all these associated machines require

power-surge protectors, line conditioners, and backup power supplies.

Fluorescent lights, which produce radio-frequency noise pollution, are

forbidden around MRIs. MRIs are also very bothered by passing CB

radios, paging systems, and ambulance transmissions. It is generally

considered a good idea to sheathe the entire MRI cubicle (especially the

doors, windows, electrical wiring, and plumbing) in expensive, well-

grounded sheet-copper.

Despite all these drawbacks, the United States today rejoices in

possession of some two thousand MRI machines. (There are hundreds in

other countries as well.) The cheaper models cost a solid million dollars

each; the top-of-the-line models, two million. Five million MRI scans

were performed in the United States last year, at prices ranging from

six hundred dollars, to twice that price and more.

In other words, in 1991 alone, Americans sank some five billion

dollars in health care costs into the miraculous MRI technology.

Today America's hospitals and diagnostic clinics are in an MRI

arms race. Manufacturers constantly push new and improved machines

into the market, and other hospitals feel a dire need to stay with the

state-of-the-art. They have little choice in any case, for the balky,

temperamental MRI scanners wear out in six years or less, even when

treated with the best of care.

Patients have little reason to refuse an MRI test, since insurance

will generally cover the cost. MRIs are especially good for testing for

neurological conditions, and since a lot of complaints, even quite minor

ones, might conceivably be neurological, a great many MRI scans are

performed. The tests aren't painful, and they're not considered risky.

Having one's tissues briefly magnetized is considered far less risky than

the fairly gross ionization damage caused by X-rays. The most common

form of MRI discomfort is simple claustrophobia. MRIs are as narrow as

the grave, and also very loud, with sharp mechanical clacking and

buzzing.

But the results are marvels to behold, and MRIs have clearly

saved many lives. And the tests will eliminate some potential risks to

the patient, and put the physician on surer ground with his diagnosis.

So why not just go ahead and take the test?

MRIs have gone ahead boldly. Unfortunately, miracles rarely

come cheap. Today the United States spends thirteen percent of its Gross

National Product on health care, and health insurance costs are

drastically outstripping the rate of inflation.

High-tech, high-cost resources such as MRIs generally go to to

the well-to-do and the well-insured. This practice has sad

repercussions. While some lives are saved by technological miracles --

and this is a fine thing -- other lives are lost, that might have been

rescued by fairly cheap and common public-health measures, such as

better nutrition, better sanitation, or better prenatal care. As advanced

nations go, the United States a rather low general life expectancy, and a

quite bad infant-death rate; conspicuously worse, for instance, than

Italy, Japan, Germany, France, and Canada.

MRI may be a true example of a technology genuinely ahead of

its time. It may be that the genius, grit, and determination of Raymond

Damadian brought into the 1980s a machine that might have been better

suited to the technical milieu of the 2010s. What MRI really requires for

everyday workability is some cheap, simple, durable, powerful

superconductors. Those are simply not available today, though they

would seem to be just over the technological horizon. In the meantime,

we have built thousands of magnetic windows into the body that will do

more or less what CAT-scan x-rays can do already. And though they do

it better, more safely, and more gently than x-rays can, they also do it

at a vastly higher price.

Damadian himself envisioned MRIs as a cheap mass-produced

technology. "In ten to fifteen years," he is quoted as saying in 1985,

"we'll be able to step into a booth -- they'll be in shopping malls or

department stores -- put a quarter in it, and in a minute it'll say you

need some Vitamin A, you have some bone disease over here, your blood

pressure is a touch high, and keep a watch on that cholesterol." A

thorough medical checkup for twenty-five cents in 1995! If one needed