Выбрать главу

proof that Raymond Damadian was a true visionary, one could find it

here.

Damadian even envisioned a truly advanced MRI machine

capable of not only detecting cancer, but of killing cancerous cells

outright. These machines would excite not hydrogen atoms, but

phosphorus atoms, common in cancer-damaged DNA. Damadian

speculated that certain Larmor frequencies in phosphorus might be

specific to cancerous tissue; if that were the case, then it might be

possible to pump enough energy into those phosphorus nuclei so that

they actually shivered loose from the cancer cell's DNA, destroying the

cancer cell's ability to function, and eventually killing it.

That's an amazing thought -- a science-fictional vision right out

of the Gernback Continuum. Step inside the booth -- drop a quarter --

and have your incipient cancer not only diagnosed, but painlessly

obliterated by invisible Magnetic Healing Rays.

Who the heck could believe a visionary scenario like that?

Some things are unbelievable until you see them with your own

eyes. Until the vision is sitting right there in front of you. Where it

can no longer be denied that they're possible.

A vision like the inside of your own brain, for instance.

SUPERGLUE

This is the Golden Age of Glue.

For thousands of years, humanity got by with natural glues like

pitch, resin, wax, and blood; products of hoof and hide and treesap

and tar. But during the past century, and especially during the past

thirty years, there has been a silent revolution in adhesion.

This stealthy yet steady technological improvement has been

difficult to fully comprehend, for glue is a humble stuff, and the

better it works, the harder it is to notice. Nevertheless, much of the

basic character of our everyday environment is now due to advanced

adhesion chemistry.

Many popular artifacts from the pre-glue epoch look clunky

and almost Victorian today. These creations relied on bolts, nuts,

rivets, pins, staples, nails, screws, stitches, straps, bevels, knobs, and

bent flaps of tin. No more. The popular demand for consumer

objects ever lighter, smaller, cheaper, faster and sleeker has led to

great changes in the design of everyday things.

Glue determines much of the difference between our

grandparent's shoes, with their sturdy leather soles, elaborate

stitching, and cobbler's nails, and the eerie-looking modern jogging-

shoe with its laminated plastic soles, fabric uppers and sleek foam

inlays. Glue also makes much of the difference between the big

family radio cabinet of the 1940s and the sleek black hand-sized

clamshell of a modern Sony Walkman.

Glue holds this very magazine together. And if you happen to

be reading this article off a computer (as you well may), then you

are even more indebted to glue; modern microelectronic assembly

would be impossible without it.

Glue dominates the modern packaging industry. Glue also has

a strong presence in automobiles, aerospace, electronics, dentistry,

medicine, and household appliances of all kinds. Glue infiltrates

grocery bags, envelopes, books, magazines, labels, paper cups, and

cardboard boxes; there are five different kinds of glue in a common

filtered cigarette. Glue lurks invisibly in the structure of our

shelters, in ceramic tiling, carpets, counter tops, gutters, wall siding,

ceiling panels and floor linoleum. It's in furniture, cooking utensils,

and cosmetics. This galaxy of applications doesn't even count the

vast modern spooling mileage of adhesive tapes: package tape,

industrial tape, surgical tape, masking tape, electrical tape, duct tape,

plumbing tape, and much, much more.

Glue is a major industrial industry and has been growing at

twice the rate of GNP for many years, as adhesives leak and stick

into areas formerly dominated by other fasteners. Glues also create

new markets all their own, such as Post-it Notes (first premiered in

April 1980, and now omnipresent in over 350 varieties).

The global glue industry is estimated to produce about twelve

billion pounds of adhesives every year. Adhesion is a $13 billion

market in which every major national economy has a stake. The

adhesives industry has its own specialty magazines, such as

Adhesives Age andSAMPE Journal; its own trade groups, like the

Adhesives Manufacturers Association, The Adhesion Society, and the

Adhesives and Sealant Council; and its own seminars, workshops and

technical conferences. Adhesives corporations like 3M, National

Starch, Eastman Kodak, Sumitomo, and Henkel are among the world's

most potent technical industries.

Given all this, it's amazing how little is definitively known

about how glue actually works -- the actual science of adhesion.

There are quite good industrial rules-of-thumb for creating glues;

industrial technicians can now combine all kinds of arcane

ingredients to design glues with well-defined specifications:

qualities such as shear strength, green strength, tack, electrical

conductivity, transparency, and impact resistance. But when it

comes to actually describing why glue is sticky, it's a different

matter, and a far from simple one.

A good glue has low surface tension; it spreads rapidly and

thoroughly, so that it will wet the entire surface of the substrate.

Good wetting is a key to strong adhesive bonds; bad wetting leads

to problems like "starved joints," and crannies full of trapped air,

moisture, or other atmospheric contaminants, which can weaken the

bond.

But it is not enough just to wet a surface thoroughly; if that

were the case, then water would be a glue. Liquid glue changes

form; it cures, creating a solid interface between surfaces that

becomes a permanent bond.

The exact nature of that bond is pretty much anybody's guess.

There are no less than four major physico-chemical theories about

what makes things stick: mechanical theory, adsorption theory,

electrostatic theory and diffusion theory. Perhaps molecular strands

of glue become physically tangled and hooked around irregularities

in the surface, seeping into microscopic pores and cracks. Or, glue

molecules may be attracted by covalent bonds, or acid-base

interactions, or exotic van der Waals forces and London dispersion

forces, which have to do with arcane dipolar resonances between

magnetically imbalanced molecules. Diffusion theorists favor the

idea that glue actually blends into the top few hundred molecules of

the contact surface.

Different glues and different substrates have very different

chemical constituents. It's likely that all of these processes may have

something to do with the nature of what we call "stickiness" -- that

everybody's right, only in different ways and under different

circumstances.

In 1989 the National Science Foundation formally established

the Center for Polymeric Adhesives and Composites. This Center's

charter is to establish "a coherent philosophy and systematic

methodology for the creation of new and advanced polymeric

adhesives" -- in other words, to bring genuine detailed scientific

understanding to a process hitherto dominated by industrial rules of

thumb. The Center has been inventing new adhesion test methods

involving vacuum ovens, interferometers, and infrared microscopes,

and is establishing computer models of the adhesion process. The

Center's corporate sponsors -- Amoco, Boeing, DuPont, Exxon,

Hoechst Celanese, IBM, Monsanto, Philips, and Shell, to name a few of