Смысл математической обработки заключается в следующем. Надо убедиться в том, что полученные различия не случайны. Дело в том, что результаты отдельных экспериментов, даже сделанных в абсолютно одинаковых условиях, могут немного различаться между собой. Это связано с погрешностью измерений и чисто случайными факторами, которые всегда присутствуют в природе. Посмотрим на данные, полученные в контрольной группе. Мы видим, что количество микробов в различных экспериментах неодинаково: оно колеблется от 24 до 32 млн, хотя условия во всех пяти сосудах ничем не различались. Нам надо выяснить, не случайны ли различия как между контрольной и экспериментальными группами, так и между разными экспериментальными группами. Для этого существуют методы математической статистики. Эта наука представляет собой раздел математики, изучающий закономерности в количественных результатах наблюдений и экспериментов. В частности, с её помощью можно решить вопрос о том, насколько велика вероятность того, что полученные различия вызваны чисто случайными причинами. Если она окажется малой, то можно будет считать, что наше воздействие действительно влияет на изучаемое явление. В таком случае говорят, что это влияние является достоверным. В противном случае оно считается недостоверным и не может приниматься в расчёт в научном исследовании. Часто, для того чтобы убедиться в достоверности полученных результатов, приходится ставить очень много экспериментов, так как математическая статистика работает тем точнее, чем с большим количеством материала она имеет дело.
Итак, полученные в исследовании данные можно представить в виде таблиц. Однако использование специальных рисунков – диаграмм значительно облегчает восприятие результатов исследования. Диаграммы наглядно изображают зависимость между различными величинами. Одним из видов диаграмм являются диаграммы-линии, или графики. Построим график, иллюстрирующий данные нашего эксперимента (рис. 28, А).
Нам надо представить зависимость между концентрацией изучаемого вещества и количеством бактерий в 1 мм3 питательного раствора. Эти величины называются переменными. Концентрацию вещества мы считаем независимой переменной, так как можем задавать и изменять её по собственному усмотрению. Количество же бактерий считается зависимой переменной, поскольку она непосредственно зависит от первой величины и у нас нет других возможностей на неё повлиять. В математике эти величины называются соответственно аргументом и функцией. Таким образом, на графике будет изображена функциональная зависимость количества бактерий от количества введённого в среду препарата.
На оси абсцисс отложим значения количества введённого препарата, а на оси ординат – среднее по всем опытам количество бактерий, обнаруженное во взятой пробе. От каждой точки на обеих осях проведём перпендикулярные прямые. Точка их пересечения и будет показывать, какое количество бактерий соответствует данному количеству добавленного препарата.
В результате мы получили четыре точки, соответствующие 0; 1; 5 и 10 мг препарата. Далее мы можем рассуждать так. В эксперименте мы не использовали промежуточные количества вещества, например 0,7; или 8 мг.
Рис. 28. Примеры непрерывного графика (А), круговой (Б) и столбчатой (В) диаграммы
А какое количество бактерий мы бы обнаружили в этих случаях? Логично предположить, что это значение, например, для 7 мг находилось бы где-то между 14,8 млн и 9 млн. Мы имеем право считать, что между концентрацией вещества и количеством микроорганизмов существует непрерывная зависимость. Эта зависимость изображается на графике плавной кривой, соединяющей проставленные точки.