Выбрать главу

Расстояние между двумя точками в евклидовом пространстве определяют с помощью теоремы Пифагора. Глядя на рисунок, можно легко убедиться в том, что на плоскости расстояние между двумя любыми точками равно:

√¯х2+ y2,

а в пространстве:

√¯x2 + у2 + z2.

В некоторых случаях используют не прямоугольные, а другие системы координат, например цилиндрическую и сферическую. Цилиндрическая система строится следующим образом. Допустим, нам нужно определить положение точки М (рис. 35, А). Пусть в пространстве задана декартова прямоугольная система координат Oxyz и R – расстояние от точки М до координатной оси Oz.

Рис. 35. Цилиндрическая (А) и сферическая (Б) системы координат

Тогда одной из координатных поверхностей (R = const), проходящих через точку М, является цилиндрическая поверхность вращения с осью Oz и радиусом R (поэтому координаты точки М называются цилиндрическими). Если при этом 0 – угол, который плоскость, проходящая через точку М и координатную ось Oz, образует с координатной плоскостью Oxz, то цилиндрическими координатами точки М является упорядоченная тройка чисел (R; θ; Z), где Z – проекция М на ось Oz.

Сферическая система координат используется в астрономии и навигации. Для определения положения точки необходимо знать её расстояние от начала координат – центра сферы (т. е. радиус сферы) и два угла (рис. 35, Б). Попробуйте сами построить такую систему, воспользовавшись приведённым рисунком.

Свойства пространства.

Согласно современным представлениям, пространство является однородным, т. е. при всех прочих равных условиях, например при действии одинаковых сил, все физические процессы протекают одинаково в любой точке пространства.

Другим свойством пространства является его изотропность, или изотропия, – отсутствие в пространстве какого-либо выделенного направления. Во Вселенной нет «верха и низа» или «права и лева». Если любую систему повернуть на любой угол, никакие физические процессы в ней не изменятся. Некоторые законы механики основаны именно на том, что пространство обладает свойством изотропности.

Проверьте свои знания

1. Кем была создана первая геометрия?

2. Как называются оси в декартовой системе координат?

3. Каким образом можно определить вектор?

4. Что означают понятия «однородность пространства»; «изотропность пространства»?

5. Какая система координат (двух– или трёхмерная) используется при снятии электроэнцефалограммы и электрокардиограммы?

Задания

1. Попробуйте построить систему координат, воспользовавшись рисунком в этом параграфе. Укажите в каждой системе координат определённую точку. Обменяйтесь чертежами с одноклассниками. По приведённым чертежам определите координаты заданной точки в прямоугольных, цилиндрических и сферических координатах.

2. Обсудите в классе, почему сферическую систему координат в основном используют в астрономии и навигации.

§ 14 Время и длительность

– А-а! Тогда все понятно, – сказал Болванщик. – Убить Время! Разве такое ему может понравиться! Если б ты с ним не ссорилась, всегда могла бы просить у него всё, что хочешь. Допустим, сейчас десять часов утра – пора идти на занятия. А ты шепнула ему словечко и р-раз! – стрелка побежала вперёд! Половина второго – обед!

Л. Кэрролл. Алиса в стране чудес
Сущность времени

Понимание природы времени более сложно, чем понимание пространства. Пространство воспринимается легче потому, что мы можем свободнее в нём ориентироваться, перемещаясь в любом направлении, двигаясь в одну сторону и возвращаясь обратно. Со временем это делать нельзя, временем мы управлять не можем. Во времени что-то появляется, меняется и непременно исчезает. Это последнее обстоятельство всегда вызывало у людей страх и тревогу. В древнегреческой мифологии время олицетворяет божество Кронос, порождающий и пожирающий своих детей. Не будучи способными понять сущность времени, люди часто используют для его описания глаголы, которые на самом деле описывают движение в пространстве неких предметов. Время в нашей речи может «идти», «лететь», «ползти», «проходить» и т. д. Однако время не предмет и в пространстве не передвигается, но за неимением других способов его описания мы уподобляем время движению. Часто приходится слышать, что время – это последовательность событий. Но тогда возникает вопрос: последовательность в чём? Ясно, что не в пространстве. Значит, во времени. Получается, что «время – это последовательность событий во времени». Понятно, что из такого определения многого не извлечёшь.