Суточные колебания температуры на Венере практически отсутствуют, ее атмосфера хорошо сохраняет тепло даже в условиях продолжительных суток (один оборот вокруг оси планета совершает за 240 дней). Этому способствует парниковый эффект: атмосфера, несмотря на облачный слой, пропускает достаточное количество солнечных лучей, и поверхность планеты нагревается. Однако тепловое (инфракрасное) излучение нагретой поверхности в значительной степени поглощается содержащимся в атмосфере углекислым газом и облаками. Благодаря такому своеобразному тепловому режиму температура на поверхности Венеры выше, чем на Меркурии, который расположен ближе к Солнцу, и доходит до 470 °C. Проявления парникового эффекта, хотя и в меньшей степени, заметны и на Земле: в пасмурную погоду ночью почва и воздух охлаждаются не так интенсивно, как при ясном безоблачном небе, когда могут случиться ночные заморозки (рис. 2).
Рис. 2. Схема парникового эффекта
Марс. На поверхности этой планеты можно выделить крупные (более 2000 км в диаметре) впадины – «моря» и возвышенные области – «материки». На их поверхности, наряду с многочисленными кратерами метеоритного происхождения, обнаружены гигантские вулканические конусы высотой 15–20 км, диаметр основания которых достигает 500–600 км. Считается, что деятельность этих вулканов прекратилась лишь несколько сот миллионов лет тому назад. Из других форм рельефа отмечены горные цепи, системы трещин коры, огромные каньоны и даже объекты, похожие на русла высохших рек. На склонах видны осыпи, встречаются участки, занятые дюнами. Все эти и другие следы атмосферной эрозии подтвердили предположения о пылевых бурях на Марсе.
Исследования химического состава марсианского грунта, которые проведены автоматическими станциями «Викинг», показали высокое содержание в этих породах кремния (до 20 %), железа (до 14 %). В частности, красноватая окраска поверхности Марса, как и предполагалось, объясняется присутствием оксидов железа в виде такого известного на Земле минерала, как лимонит.
Природные условия на Марсе весьма суровы: средняя температура на его поверхности всего -60 °C и крайне редко бывает положительной. На полюсах Марса температура падает до -125 °C, при которой не только замерзает вода, но даже углекислый газ превращается в сухой лед. Видимо, полярные шапки Марса состоят из смеси обычного и сухого льда. Вследствие смены времен года, каждое из которых примерно вдвое длиннее, чем на Земле, полярные шапки тают, углекислый газ выделяется в атмосферу и ее давление повышается. Перепад давления создает условия для сильных ветров, скорость которых может превышать 100 м/с, и возникновения пылевых бурь. Воды в атмосфере Марса мало, но вполне вероятно, что ее значительные запасы сосредоточены в слое многолетней мерзлоты, аналогичном существующему в холодных районах земного шара.
§ 4. Малые тела Солнечной системы
Помимо больших планет вокруг Солнца обращаются также малые тела Солнечной системы: множество малых планет и комет.
Всего к настоящему времени обнаружено более 100 тысяч малых планет, которые называют еще астероидами (звездоподобными), поскольку из-за своих малых размеров они даже в телескоп видны как светящиеся точки, похожие на звезды. До недавнего времени считалось, что все они движутся в основном между орбитами Марса и Юпитера, составляя так называемый пояс астероидов. Самым крупным объектом среди них является Церера, которая имеет диаметр около 1000 км (рис. 3). Считается, что общее число малых планет, размеры которых превышают 1 км, в этом поясе может достигать 1 млн. Но даже и в этом случае их общая масса в 1000 раз меньше массы Земли.
Рис. 3. Сравнительные размеры крупнейших астероидов
Не существует принципиальных различий между астероидами, которые мы наблюдаем в космическом пространстве с помощью телескопа, и метеоритами, которые попадают в руки человека после того, как они упали из космического пространства на Землю. Метеориты не представляют собой какого-то особого класса космических тел – это обломки астероидов. Они могут сотни миллионов лет двигаться по своим орбитам вокруг Солнца, как и остальные, более крупные тела Солнечной системы. Но если их орбиты пересекаются с орбитой Земли, они попадают на нашу планету как метеориты.
Развитие наблюдательных средств, в частности установка приборов на космических аппаратах, позволило установить, что в окрестностях Земли пролетает немало тел размером от 5 до 50 м (до 4 в месяц). К настоящему времени известно около 20 тел астероидного размера (от 50 м до 5 км), орбиты которых проходят недалеко от нашей планеты. Опасения по поводу возможного столкновения таких тел с Землей значительно усилились после падения на Юпитер кометы Шумейкеров – Леви 9 в июле 1995 г. Вероятно, все же нет особых оснований считать, что количество столкновений с Землей может сколько-нибудь заметно увеличиться (ведь «запасы» метеоритного вещества в межпланетном пространстве постепенно истощаются). Из числа столкновений, имевших катастрофические последствия, можно назвать лишь падение в 1908 г. Тунгусского метеорита – объекта, который по современным представлениям был ядром небольшой кометы.
С помощью космических аппаратов удалось получить изображения некоторых малых планет с расстояния в несколько десятков тысяч километров. Как и предполагалось, породы, составляющие их поверхность, оказались аналогичны тем, которые распространены на Земле и Луне, в частности, обнаружены оливин и пироксен. Подтвердились представления о том, что небольшие астероиды имеют неправильную форму, а их поверхность испещрена кратерами. Так, размеры Гаспры 19x12x11 км. У астероида Ида (размеры 56x28x28 км) обнаружен на расстоянии около 100 км от его центра спутник размером около 1,5 км. В подобной «двойственности» заподозрено около 50 астероидов.
Исследования, проведенные за последние 10–15 лет, подтвердили высказанные ранее предположения о существовании в Солнечной системе еще одного пояса малых тел. Здесь за орбитой Нептуна открыто уже свыше 800 объектов диаметром от 100 до 800 км, размеры некоторых превышают 2000 км. После всех этих открытий Плутон, диаметр которого составляет 2400 км, был лишен статуса большой планеты Солнечной системы. Предполагается, что общая масса «занептунных» объектов может быть равна массе Земли. Вероятно, эти тела содержат в своем составе значительное количество льда и больше похожи на ядра комет, чем на астероиды, находящиеся между Марсом и Юпитером.
Кометы, которые из-за своего необычного вида (наличие хвоста) с древнейших времен обращали на себя внимание всех людей, не случайно относятся к малым телам Солнечной системы. Несмотря на внушительные размеры хвоста, который может превышать в длину 100 млн км, и головы, которая по диаметру может превосходить Солнце, кометы справедливо называют «видимое ничто». Вещества в комете очень немного, практически все оно сосредоточено в ядре, которое представляет собой небольшую (по космическим меркам) снежно-ледяную глыбу с вкраплением мелких твердых частиц различного химического состава. Так, ядро одной из самых знаменитых комет – кометы Галлея, изображение которой было в 1986 г. получено КА «Вега», имеет длину всего 14 км, а ширину и толщину – вдвое меньше. В этом «грязном мартовском сугробе», как часто называют кометные ядра, содержится примерно столько замерзшей воды, сколько в снежном покрове, выпавшем за одну зиму на территории Московской области.