В аристотелевском Ликее (IV-III вв.) был разработан целый историографический проект, который предполагал составление подробных историй развития как теоретического, так и практического знания, каким оно виделось к концу IV в. За основу было взято аристотелевское деление наук на теоретические, «практические» и «поэтические» и, в частности, теоретических на теологию (метафизику), математику и физику. Последней занимался Теофраст из Эреса, первыми двумя — Евдем Родосский, автор сочинений «История теологии», «История арифметики», «История геометрии», «История астрологии». По музыкальным же вопросам специалистом в Ликее был Аристоксен Тарентский. Именно благодаря значительным усилиям этих людей наши знания по греческой математике в ключевой период ее истории достаточно полны[653].
Философские школы раннего эллинистического времени (нач. III — кон. II вв.) утрачивают интерес к математике, следовательно, исчезает ее интегральное восприятие. Поэтому о дальнейшей истории математики имеет смысл говорить уже в связи с конкретными науками и их яркими представителями (см. далее). Из общих особенностей развития наук математического цикла можно отметить следующее. Сама методология греческой математики и все ее течения сложились ко временам Евклида, «Начала» (325 г.) которого содержат все итоги развития математики, а также окончательно сложившийся теоретико-доказательный аппарат. Главным научным центром становится Александрия, а основные открытия делаются в период до середины II в. К этому же периоду относится действительно состоявшееся в Александрии знакомство греческой математики с восточными математическими исследованиями, например Гипсикл (II в.) вводит для измерения угла градусную 60-ричную систему счисления, которую мы употребляем по настоящее время. Общей чертой этого периода стал переход от пифагорейских арифметических методов к так называемой «геометрической алгебре», в русло которой греческих математиков направили как открытие иррациональных чисел, так и апории философов-элеатов, связанные с парадоксами бытовых представлений о бесконечно малых. Это означало, что числа представляли себе в виде отрезков прямых, их квадраты и кубы — в виде геометрических квадратов и кубов, также и основная работа с ними шла по геометрическим правилам. Это было решением двух указанных проблем, но это же и клало предел развитию греческой науки, ибо развитие алгебры при таком подходе оказывалось просто невозможным.
Поздний, римский, период античной математики характеризуется, как и вся античная наука, замедлением или прекращением самостоятельных исследований, составлением большого числа компендиумов, схолий, сводов и учебников. Как замечает Л. Я. Жмудь, здесь «мы имеем дело со средой философских школ эпохи Империи — перипатетиков, неопифагорейцев, неоплатоников, средой, в которой знание математики было частью образования и профессии, а отсутствие оригинального вклада в эту науку — нормой». Лучшими из компендиумов были различные работы среднего платоника Теона Смирнского (перв. пол. II в. н. э.) и особенно Паппа Александрийского (р. ок. 320 г. н. э.). Среди хороших комментаторов можно назвать неоплатоников Прокла Диадоха (412–485 гг. н. э.) и Симпликия (перв. пол. VI в. н. э.). Новые открытия делались крайне редко, но к числу математиков, сумевших самостоятельно продвинуть науку, следует отнести Клавдия Птолемея и Диофанта, работавших в Александрии. В это время намечается отход от тотальной геометризации и первые попытки построения настоящей алгебры, что связано отчасти с влиянием вавилонской науки, отчасти с появлением неопифагореизма (Нумений, Никомах) во II в., то есть оживлением интереса к числу. К сожалению, эти новые тенденции уже не могли получить развития в связи с общим упадком античной культуры, ее христианизацией и одичанием. Зверское убийство христианскими фанатиками главы александрийского Мусейона, женщины-математика Ипатии, в 415 г. н. э. считается символической датой заката александрийской математики.