Выбрать главу

В последующем все эти научные достижения получили свое развитие не на христианском Западе, а в трудах ученых арабского Востока IX-X вв. н. э. — ал-Хорезми, ал-Баттани, Абу Камила, Ибн ал-Хайсама и других. И уже через посредство испанских и итальянских переводчиков с арабского греческая математика с середины XII в. н. э. стала появляться в Европе. Массовый перевод греческих математических трактатов на латинский и национальные европейские языки был осуществлен только в XVI в. н. э.

V. Геометрия

Давая краткий очерк развития античной геометрии, мы, как и в предыдущем случае, вынуждены ограничиться только общей периодизацией, главными течениями, основными именами с указанием, кто что открыл. Геометрия, действительно, наука более древняя, чем арифметика, но мы полагаем, что упоминание о вездесущих египтянах скорее является штампом, характерным для античной историографии науки, чем отвечает реальному положению дел. Во всяком случае, с именем первого греческого геометра Фалеса Милетского связывают четыре теоремы, не соотносимые с восточной математикой: 1) о том, что диаметр делит круг пополам, 2) что углы при основании равнобедренного треугольника равны («теорема Фалеса»), 3) что накрест лежащие углы при пересечении двух прямых равны, 4) теорему о равенстве треугольников по двум углам и стороне. Все эти факты элементарны и доказываются взаимным наложением соответствующих фигур. Революционность мысли Фалеса и его последователей состояла именно в том, что он стремился найти доказательства для очевидных фактов. И это был первый камень в основание теории дедуктивных доказательств. Предполагается, что к Фалесу восходит часть положений III книги «Начал» Евклида.

Превращение геометрии в теоретическую науку было, по словам историографа математики Евдема Родосского (вт. пол. IV в.), осуществлено Пифагором[658]. Сам Пифагор, надо полагать, доказал теорему, носящую его имя (вероятно, через сложение формул подобия треугольников, получающихся при опускании высоты из прямого угла на гипотенузу), и построил два первых правильных многогранника (тетраэдр и куб). Пифагорейской школе в целом принадлежит: 1) теорема о равенстве суммы углов треугольника двум прямым углам; 2) теорема о замощении плоскости правильными многоугольниками; 3) теория приложения площадей (изложенная в I-II книгах «Начал»; 4) вся IV внига «Начал»; 5) построение всех пяти правильных многогранников (додекаэдр построил Гиппас, а октаэдр и икосаэдр — Теэтет), которая вошла в XIII книгу «Начал»; 6) создание теории иррациональных чисел (Гиппас, Феодор и Теэтет); 7) написание популярного учебника по геометрии еще в сер. V в., содержащего основы первых четырех книг «Начал» (по ван дер Вардену). Первое дошедшее до нас дедуктивное доказательство находится в поэме «О природе» философа Парменида Элейского (540–480 гг.), и, по мысли Т. Гомперца, заимствовано у пифагорейцев, поскольку сам Парменид был учеником этой школы.

Среди математиков Хиосской школы наиболее известен Гиппократ Хиосский (ок. 440 г.), чей трактат «Начала», посвященный проблеме квадратуры круга с помощью луночек, — первое дошедшее до нас математическое сочинение эллинов. Вообще Гиппократ исследовал площади плоских фигур, ограниченных прямыми и кривыми линиями. Другой представитель этой школы, философ и ученый Демокрит из Абдер[659] (470 или 480–380 или 370 гг.), основываясь на своей атомистической философии, заложил основы того, что мы сегодня называем интегральным исчислением: считал объемы призм, конусов и цилиндров, разбивая их по высоте на малые секции.

вернуться

658

Procl., In Eucl., 65.15 sq.

вернуться

659

Лурье С. Я. Демокрит: Тексты, перевод, исследования. — Л.: Наука, 1970.