Пожалуйста, не воспринимайте это предложение буквально.
Многие склонны считать, что компьютеры с их почти чудесными возможностями делают математиков, да и саму математику, неактуальными. Но компьютеры вытесняют математиков не больше, чем микроскопы вытесняют биологов. Благодаря компьютерам мы теперь иначе занимаемся математикой, но в целом они лишь освобождают нас от монотонной работы. Они дают нам время подумать, помогают выискивать закономерности и добавляют в наш арсенал новый мощный инструмент, позволяющий развивать математику быстрее и эффективнее.
На самом деле главная причина того, что математика становится все более необходимой, как раз и состоит в повсеместном распространении дешевых и мощных компьютеров. Их появление открыло новые возможности для приложения математики к задачам реального мира. Методы, которые прежде не применялись из-за слишком большого объема вычислений, сегодня стали рутиной. Величайшие математики эпохи карандаша и бумаги развели бы руками в отчаянии при виде метода, требующего миллиарда вычислительных операций. Сегодня нас это не смущает, поскольку мы обладаем технологией, позволяющей проводить математические операции за доли секунды.
Математики давно находятся на острие компьютерной революции вместе с представителями бесчисленных других профессий. Вспомните хотя бы Джорджа Буля, который положил начало математической логике, составляющей основу современной компьютерной архитектуры. Вспомните Алана Тьюринга и универсальную машину, названную его именем, – математическую систему, способную вычислять все, что в принципе поддается вычислению. Вспомните Мухаммеда аль-Хорезми, чей алгебраический трактат, написанный примерно в 820 году, подчеркивал роль систематических вычислительных процедур, называемых теперь в его честь алгоритмами.
Большинство алгоритмов, которые определяют впечатляющие возможности компьютеров, прочно опираются на математику. Многие задействованные в них решения взяты, что называется, «с полки», из уже существующего запаса математических идей. Например, алгоритм PageRank компании Google, который дает количественную оценку значимости веб-сайта и является основой целой индустрии с многомиллиардным оборотом. Даже в наимоднейшем алгоритме глубокого обучения искусственного интеллекта используются давно испытанные и проверенные математические концепции, такие как матрицы и взвешенные графы. В одном из методов решения такой прозаической задачи, как поиск документа по конкретной цепочке символов, задействована математическая абстракция под названием «конечный автомат».
Участие математики в этих интереснейших разработках, как правило, упускается из виду. Так что в следующий раз, когда средства массовой информации вытащат на авансцену новую чудесную способность компьютеров, не забывайте, что за кулисами прячется математика, а также технические решения, физика, химия и психология и что без поддержки этих скрытых от глаз помощников цифровая суперзвезда вряд ли появилась бы на небосклоне.
Значимость математики в современном мире легко недооценить, потому что почти все, что связано с математикой, происходит за кулисами. Прогуляйтесь по улице любого города, и вы увидите ошеломляющее количество вывесок, которые кричат о важности банков, овощных магазинов, супермаркетов, модных бутиков, точек автосервиса и фастфуда, юристов, предметов старины, благотворительных организаций и тысячи других заведений и профессий. А вот бронзовой таблички, извещающей о том, что здесь консультирует математик, не найти. И ни один супермаркет не продаст вам немного «консервированной математики».
Однако стоит копнуть поглубже, и значимость математики быстро становится очевидной. Без уравнений аэродинамики невозможно конструировать самолеты. Навигация опирается на тригонометрию. Сегодня мы пользуемся навигацией совсем не так, как делал это Христофор Колумб, поскольку математика у нас встроена в электронные устройства и нам не приходится пользоваться пером, чернилами и навигационными таблицами, но базовые принципы остаются примерно теми же. Для разработки новых лекарств необходима статистика, без которой невозможно обеспечить их безопасность и эффективность. Спутниковая связь невозможна без глубокого понимания небесной механики. Прогнозирование погоды требует решения уравнений, описывающих движение атмосферных масс, количество содержащейся в них влаги, температуру и взаимодействие всех этих факторов. Можно привести тысячи разных примеров. Мы не замечаем, что в них задействована математика, ведь для использования результатов это знать необязательно.