Другая возможность – удовлетвориться меньшим, то есть решением, которое не слишком далеко от наилучшего, но которое проще найти. В некоторых случаях этого можно добиться, воспользовавшись поразительным открытием, сделанным в 1890 году в настолько новой области математики, что многие ведущие ученые того времени не видели в ней никакой ценности и зачастую не верили результатам, которые постепенно получали их более прогрессивные коллеги. Менее приятным было то, что решаемые ими задачи воспринимались «математикой для математики» и внешне не имели взаимосвязи с чем-то в реальном мире. Их результаты считались абсолютно искусственными, а новые геометрические фигуры, которые они строили, даже окрестили «патологическими». Многие были убеждены, что эти ученые, даже если их результаты верны, не продвигают математику вперед, а лишь воздвигают глупые препятствия, мешающие прогрессу.
Один из методов поиска хороших, но не оптимальных решений задачи коммивояжера родился из таких глупых препятствий. Несколько десятилетий на переломе XIX и XX веков математика находилась в состоянии перехода. Царивший ранее авантюризм почти исчерпал себя, а игнорирование таких фундаментальных вопросов, как «о чем, собственно, идет речь?» и «действительно ли все так очевидно, как всем кажется?», сеяло смятение и растерянность там, где требовались ясность и понимание. Беспокойство по поводу таких продвинутых областей, как дифференциальное и интегральное исчисление, где математики легко и непринужденно разбрасывались бесконечными процессами, постепенно переходило с изотерических вещей на повседневные. Вместо сомнений в интегралах сложных математических функций вроде комплексного логарифма математики стали задаваться вопросом о том, что такое функция. Вместо того чтобы определять непрерывную кривую как кривую, которую можно «свободно нарисовать от руки», они стремились к большей строгости и обнаруживали ее отсутствие. Даже природа такого фундаментального и очевидного объекта, как число, вдруг оказалась весьма туманной. И речь здесь не только о новых конструктах, таких как комплексные числа: речь шла о добрых старых натуральных числах 1, 2, 3. Традиционная математика продолжала идти вперед, опираясь на предположение, что вопросы такого рода со временем непременно разъяснятся и все будет хорошо. Логический статус основ можно было без опаски оставить занудам и педантам. И все же… постепенно формировалось мнение о том, что такой неосмотрительный подход к дисциплине долго не продержится.
Дело по-настоящему осложнилось, когда прежние сумасбродные методы стали давать противоречащие друг другу ответы. Теоремы, издавна считавшиеся правильными, оказывались неверными в особых обстоятельствах. Интеграл, вычисленный двумя способами, давал разные ответы. Последовательности, сходившиеся, как считалось, при всех значениях переменной, иногда расходились. Конечно, все было не настолько плохо, как если бы вдруг обнаружилось, что 2 + 2 иногда равно 5, но все эти странности заставили некоторых ученых задуматься о том, что такое на самом деле 2 и 5, не говоря уже о знаках + и =.
Так что, не прислушиваясь к скептическому большинству – или прислушиваясь не слишком сильно, чтобы изменить свое мнение, – немногочисленные педанты разворошили математическое здание сверху донизу в поисках прочной основы, а затем начали перестраивать его с самого фундамента.
Как при всякой перестройке, получившийся со временем результат отличался от оригинала в некоторых тонких, но тревожных аспектах. Оказалось, что в понятии кривой на плоскости, существовавшем в математике со времен древних греков, имеются скрытые глубины. Традиционные примеры – окружности, эллипсы и параболы Евклида и Эратосфена, квадратриса, которую греки использовали для трисекции углов и поиска квадратуры круга, лемниската философа-неоплатоника Прокла, овалы Джованни Доменико Кассини, циклоиды и их более сложные отпрыски, такие как гипоциклоиды и гиперциклоиды Оле Рёмера, – обладали собственным очарованием и привели в свое время к замечательным успехам. Но, подобно тому как домашние животные создают обманчивую картину жизни в тропических лесах и пустынях, эти кривые были слишком правильными, чтобы представлять дикие сущности, обитающие в математических джунглях. В качестве примеров потенциальной сложности непрерывных кривых они не годились, поскольку были чересчур простыми.