Выбрать главу
* * *

Вернемся к существу вопроса. То, что открыл – или построил – Пеано, представляло собой непрерывную кривую, проходящую через каждую точку квадрата. Не только на границе, это просто, но и внутри него тоже. Причем эта кривая в самом деле должна проходить через каждую точку, а не просто вблизи нее.

Предположим, такая кривая существует. Тогда это не просто некая извилистая линия с собственной внутренней системой координат, показывающей, как далеко вдоль линии следует пройти. Чтобы обозначить это, достаточно одного числа, так что кривая одномерна. Раз эта извилистая линия проходит через каждую точку заполненного квадрата (объекта двумерного), то теперь мы можем обозначить каждую точку этого квадрата при помощи всего одного непрерывно меняющегося числа. Получается, что на самом деле квадрат одномерен!

Обычно я не люблю ставить восклицательные знаки, но это открытие заслуживает его. Это безумие. И правда.

Пеано тогда нашел первый пример того, что мы сегодня называем «заполняющими пространство» кривыми. Их существование опирается на тонкое, но принципиально важное различие между гладкими и непрерывными кривыми. Непрерывные кривые могут быть извилистыми. Гладкие… не могут. Они не настолько извилистые.

Пеано был достаточно проницательным для открытия подобных кривых. Ему нравились логические закавыки. Кроме того, он был первым, кто сформулировал точные аксиомы для системы натуральных чисел – составил простой список свойств, которые описывают эту систему. Свою заполняющую пространство кривую он изобрел не для забавы: она стала одним из завершающих штрихов к работе его предшественника и единомышленника, также интересовавшегося природой натуральных чисел и счета. Предшественника звали Георг Кантор, и его истинным интересом была бесконечность. Ведущие математики того времени в большинстве своем отвергали радикальные и блестящие идеи Кантора, доводя его до отчаяния. Возможно, это неприятие и не было причиной его душевного расстройства, но благоприятного влияния оно точно не оказывало. Среди немногих математиков, по достоинству оценивших то, что пытался сделать Кантор, был Давид Гильберт. Гильберт, ведущий математик своего времени, позже стал одним из пионеров математической логики и фундаментальных исследований. Возможно, он разглядел в Канторе родственную душу.

Так или иначе, началось все с Кантора и с введенных им трансфинитных кардинальных чисел – средства оценки числа членов бесконечного множества. Он доказал, что одни бесконечности больше, чем другие. Точнее говоря, то, что между целыми и действительными числами нет взаимно однозначного соответствия. Занимаясь поисками трансфинитного кардинального числа, превышающего таковое для действительных чисел, он на какое-то время пришел к убеждению, что кардинальное число для плоскости больше, чем для прямой. В 1874 году он писал Рихарду Дедекинду:

Может ли поверхность (скажем, квадрат, включая границу) однозначно соответствовать линии (скажем, отрезку прямой, включая концы) так, чтобы для каждой точки на поверхности существовала соответствующая точка на линии, а для каждой точки на линии существовала соответствующая точка на поверхности? На мой взгляд, ответить на этот вопрос не так просто, хотя ответ «нет» представляется настолько очевидным, что доказательство, кажется, почти не требуется.

Тремя годами позже он вновь написал, чтобы признать, как ошибался. Сильно ошибался. Он нашел взаимно однозначное соответствие между единичным отрезком и n-мерным пространством для любого конечного n. То есть способ сопоставить члены множеств таким образом, чтобы каждый член одного из них соответствовал ровно одному члену другого. «Я это вижу, – писал Кантор, – но я в это не верю!»

Основная идея проста: задав две точки на единичном отрезке (между 0 и 1), мы можем записать их в десятичном виде как

x = 0, x1x2x3x4

y = 0, y1y2y3y4

и поставить им в соответствие точку на том же единичном отрезке, которая в десятичном виде будет выглядеть так:

0, x1y1x2y2x3y3x4y4…,

образовав ее путем перемешивания десятичных знаков первых двух чисел, как при тасовке карт методом «рифл шафл», когда колоду делят на две части, а затем вставляют их друг в друга{24}. Разница состоит в том, что колода карт у Кантора бесконечна. Когда вы перемешиваете таким образом две бесконечные колоды, то получаете одну бесконечную колоду. Именно таким способом Кантор умудряется втиснуть две координаты в одну. Если первоначально измерения три, просто берется три колоды и т. д.

вернуться

24

Здесь необходима тщательность, поскольку некоторые действительные числа не имеют единственного десятичного представления, например 0,500000… = 0,499999… Но с этим несложно разобраться.