Но нам могли бы ещё возразить: если релятивистские излишки энергии были бы иллюзиями, то это непременно проявилось бы при сопоставлении энергии частиц с энергиями гамма-квантов, которые измеряются независимыми способами. Увы – хотя арсенал способов измерения энергии гамма-квантов довольно-таки богат [Э2], об их независимости не может быть и речи. Целый ряд методов основан на измерениях энергий конверсионных электронов и вторичных электронов, которые выстреливаются в результате комптон-эффекта, фотоэффекта, и образования электрон-позитронных пар – но «магнитный анализ спектров вторичных электронов… является наилучшим методом точного измерения энергии γ-квантов» [Э2]. По результатам этого знакомого «наилучшего метода» калибруются остальные методы – в которых определяются пороги ядерных реакций или энергии вторичных ядерных частиц, а также такой, казалось бы, обособленный метод, как измерение длины волны гамма-излучения с помощью дифракции на кристалле [М1]. Этот метод сохраняет свою обособленность, опять же, лишь при малых энергиях гамма-квантов. Но, уже при энергиях ~0.1 МэВ, соответствующая длина волны гамма-излучения на порядок меньше, чем расстояния между атомными плоскостями в кристаллах, что весьма затрудняет – особенно при скользящих углах падения – определение индекса брэгговской дифракции; так что калибровка здесь необходима. Выходит следующее: если, как мы полагаем, метод магнитного отклонения даёт не истинную, а релятивистски завышенную энергию, то с аналогичным завышением определяются и энергии гамма-квантов!
Впрочем, здесь можно было до некоторой степени избегать больших завышений, если при калибровке методом магнитного отклонения использовать частицы с достаточно большой массой – поскольку энергия, которая, согласно (4.4.2), близка к предельной у электрона, далека от предела у протона. Отсюда, кстати, вытекает возможность получения ещё одного свидетельства о наличии ограничения у кинетической энергии частицы. Известно множество ядерных реакций с порогами всего в несколько МэВ [Б2]. Эти реакции инициируются, например, протонами, для которых энергия в несколько МэВ является ничтожной, и есть гарантия, что пороги при этом измеряются без релятивистского завышения. Эти же реакции инициируются и нейтронами, и гамма-квантами – была бы их энергия выше пороговой. Электроны, которые имели бы энергию в несколько МэВ, инициировали бы эти реакции, казалось бы, ещё охотнее, чем протоны – ведь электроны притягиваются к ядру, а не отталкиваются от него. Но нет: что-то мешает электронам инициировать ядерные реакции. Считается, что релятивистские электроны, при взаимодействии с ядрами, испытывают почему-то лишь упругое рассеяние [К4]. Налицо странная асимметрия: вылететь из ядра, прихватив оттуда немалую энергию, электрон может (при бета-распаде) – а ударить по ядру, сообщив ему такую же энергию, электрон не может! Что по этому поводу говорит физика высоких энергий? А она по этому поводу хранит гробовое молчание. Высокие энергии оказалось гораздо практичнее измерять не по электронной, а по протонной шкале. Тут уж не до единства измерений – быть бы живу! Ибо из опыта ясно, что, скажем, 3 МэВа у протона – это полноценные 3 МэВа, а 3 МэВа у электрона – это пустышка.