Выбрать главу

Связывание пары квантовых пульсаторов подразумевает такое «подвешивание» их на некотором расстоянии друг от друга, которое обладает некоторым запасом устойчивости. Процедура, которая это осуществляет, заключается в следующем. Пульсации того и другого циклически прерываются так, чтобы пульсаторы попеременно «выключались» из бытия: когда в одном из них пульсации есть, в другом их нет, и наоборот. Пусть скважность прерываний составляет 50%, т.е. одну половину периода прерываний каждый из них пребывает в бытии, пульсируя с неизменённой собственной частотой, а другую половину – в небытии. Здесь мы усматриваем нечто замечательное. Во-первых, масса каждого из этих двух пульсаторов уменьшена на величину, соответствующую частоте прерываний (см. 4.6). Во-вторых, здесь имеет место новая форма движения, а именно: циклические перебросы состояния, при котором пульсации «включены» – из точки нахождения одного пульсатора в точку нахождения другого, и обратно. Эта форма движения должна обладать некоторой энергией – причём, логично допустить, что эта энергия должна зависеть от расстояния, на которое производятся эти циклические перебросы состояния. Но эта энергия циклических перебросов состояния не может появиться из ниоткуда. Она могла бы появиться за счёт убыли масс связуемых пульсаторов – и эта убыль, весьма кстати, имеет место! Значит, принцип работы связующего алгоритма очень прост. Если, согласно закону сохранения энергии, энергия циклических перебросов состояния в точности обусловлена убылью масс пульсаторов из-за циклических прерываний их пульсаций, то эти пульсаторы вынуждены находиться на конкретном расстоянии друг от друга. Потому что от этого расстояния зависит энергия циклических перебросов – а эта энергия оказывается задана связующим алгоритмом. Вот мы и пояснили принцип связи «на дефекте масс» [Г3], ведь здесь энергия связи, т.е. энергия циклических перебросов состояния, обусловлена именно убылью масс связуемых пульсаторов.

Предлагаемый подход выглядит предпочтительнее подхода официальной физики, в которой объяснение дефекта масс до сих пор отсутствует – в учебных и справочных пособиях этот феномен только констатируется. Такое положение дел обусловлено, на наш взгляд, необоснованным допущением универсальности эйнштейновского выражения E=mc2. Ведь считается, что это выражение справедливо для любой формы энергии. Но тогда, в случае с энергией связи «на дефекте масс», эту энергию придётся считать отрицательной. И эквивалентную ей массу – тоже. Но у отрицательной массы – свойства сказочные… На наш взгляд, всё гораздо проще: массе эквивалентна не любая форма энергии, а одна-единственная: собственная энергия квантового пульсатора (1.4). Потому и обнаруживается «дефект масс», что энергия связи, которая массе не эквивалентна, появляется за счёт убыли собственной энергии связуемых квантовых пульсаторов.

Заметим, что у одной и той же пары квантовых пульсаторов могут быть заданы различные энергии связи – отчего имеет место феномен квантовых уровней энергии. При этом каждая заданная энергия связи, соответствующая тому или иному квантовому уровню, всегда составляет фиксированный процент от собственной энергии пульсатора. Тогда, гравитационное изменение (1.6) собственных энергий связанных пульсаторов вызывает пропорциональные им изменения заданных энергий связи – чем сразу же объясняются гравитационные сдвиги квантовых уровней энергии в веществе. Аналогично, уменьшение собственных энергий связанных пульсаторов при приобретении ими кинетической энергии (4.4) вызывает пропорциональные уменьшения их заданных энергий связи, на множитель (1+V2/2c2)-1 (см. (4.4.3)) – чем сразу же объясняются кинематические сдвиги квантовых уровней энергии в веществе, т.е. квадратичный эффект Допплера. Более того: поскольку эти кинематические сдвиги зависят только от локально-абсолютной скорости (1.6), то наличие этих сдвигов является объективным физическим признаком того, что тело движется именно с этой, «истинной», скоростью! Как можно видеть, два названных механизма сдвигов квантовых уровней энергии в веществе обеспечиваются программными манипуляциями, не требуя для своего объяснения «гравитационного или релятивистского замедления времени» (1.12-1.15).

Какова, теоретически, максимальная энергия связи, или, соответственно, каков максимальный дефект масс? Собственная частота пульсатора при связующих прерываниях не изменяется, и на одном «разрешающем» полупериоде прерываний должен укладываться, как минимум, один период собственных пульсаций – прерывания с большей частотой бессмысленны. Отсюда следует, что максимально возможная частота связующих прерываний равна половине собственной частоты квантовых пульсаций. В частности, у предельно связанной пары двух квантовых пульсаторов, имеющих одинаковые собственные частоты, дефект масс для каждого из них составляет 50%, а их энергия связи эквивалентна массе одного из них.