Выбрать главу

Тогда уместен вопрос: что связывает между собой α-комплексы, удерживая большое ядро в целом? Напрашивается ответ: большое ядро в целом может удерживаться за счёт происходящих время от времени таких переключений связей, которые переформировывают составы α-комплексов. Действительно, из-за различающихся энергий связи атомарных электронов, т.е. различающихся частот атомных модуляций, переключения связей в α-комплексах, особенно в разных, происходят не синхронно. Неизбежны ситуации, когда протон, по завершении своего «мёртвого» полупериода для ядерных связей, вновь готов к их включению – а два нейтрона, с которыми он был связан до этого, всё ещё «заняты». Тогда протону потребуется новая «свободная» пара нейтронов. Как можно видеть, для того чтобы большое ядро было в целом стабильно, оно должно содержать некоторое избыточное число нейтронов, по сравнению с числом протонов. Если принять во внимание, что, по мере роста атомного номера, разность между самой большой и самой малой энергиями связи атомарных электронов становится всё больше, и переключения связей в α-комплексах становятся всё менее синхронными, то для стабильности ядра требуется наличие в нём всё большего числа избыточных нейтронов – что и наблюдается в действительности. Причём, избыточные – на текущий момент – нейтроны в ядре, согласно нашей модели, не охвачены ядерными связями, т.е. они являются, как это ни парадоксально, свободными. Следовательно, в больших ядрах нейтроны, из-за избыточности своего числа, охватываются ядерными силами только поочерёдно – и стабильность таких ядер обеспечивается не статичностью структуры связей в нём, а, наоборот, высокой динамичностью этой структуры.

Для сравнения отметим, что избыточность нейтронов, требуемая для стабильности ядра, традиционно объясняется необходимостью противодействия силам «кулоновского расталкивания» ядерных протонов, роль которого возрастает по мере роста атомного номера. Считается, что избыточные нейтроны «разрыхляют» ядро, ослабляя этим «кулоновское расталкивание». Но, не говоря уже о ничтожности эффекта от такого «разрыхления» по сравнению с ядерными силами, имеются явные указания на то, что кулоновское взаимодействие практически не играет роли в ядерных структурах. В самом деле, большие ядра с недостатком нейтронов – по сравнению с ядрами из «дорожки стабильности» [М3] – должны, по традиционной логике, разваливаться кулоновскими силами или, по крайней мере, испускать протоны. В действительности, такие ядра подвержены β+-распаду, т.е. они испускают позитроны [М3]. Наличие же дополнительного числа нейтронов сверх того, которое требуется для «ослабления кулоновского расталкивания», делало бы ядра, согласно традиционной логике, ещё более устойчивыми. Но и это не так: большие ядра с избытком нейтронов – по сравнению с ядрами из «дорожки стабильности» - подвержены β--распаду, т.е. они испускают электроны [М3]. Как можно видеть, у больших ядер с числом нейтронов, большим или меньшим некоторого оптимального, типичные судьбы совсем не похожи на те, которые следовали бы из наличия в ядре заметных кулоновских сил.