Выбрать главу

Ещё более показателен в этом отношении случай твёрдого неполярного диэлектрика – который описывается формулой Лорентц-Лоренца, единственным отличием которой от формулы Клаузиуса-Мосотти является замена диэлектрической проницаемости ε на квадрат показателя преломления n. Так, в стекле (SiO2) с параметрами ρ=2700 кг/м3 и n=1.8, разделения зарядов в индуцированных диполях при E=105 В/м составляли бы ~2.6·10-6 Ангстрем. Между тем, размах тепловых колебаний ядер в твёрдых телах при T=300оК составляет ~0.1 Ангстрем (см., например, [Г2]). Имей здесь место индуцирование молекулярных диполей – эффект от него был бы погребён в тепловых шумах гораздо надёжнее, чем в случае газов.

Но, если свойства неполярных диэлектриков обусловлены не индуцированием молекулярных диполей, то чем же они обусловлены?

Вернёмся к случаю с диэлектрической прокладкой, внесённой в заряженный плоский конденсатор. Чтобы поле конденсатора ослаблялось в объёме прокладки, на ней должны быть индуцированы поверхностные заряды – и не зря спонтанную поляризацию сегнетоэлектриков измеряют в кулонах на квадратный сантиметр [И1], т.е. в единицах поверхностной плотности заряда. При том, что в диэлектриках свободные заряды практически отсутствуют, поверхностные заряды вполне могут быть индуцированы через зарядовые разбалансы.

Действительно, логично допустить, что зарядовые разбалансы индуцируются в диэлектрике таким образом, чтобы имитированные при этом электрические заряды нейтрализовывали, в некоторой степени, неоднородности внешнего распределения зарядов. Тогда, действительно, со стороны отрицательной пластины конденсатора, в диэлектрике должен индуцироваться положительный зарядовый разбаланс, и наоборот. Оценим отклонения, от среднего 50-процентного значения, скважности прерываний квантовых пульсаций в атомных связках «протон-электрон», при которых индуцированные поверхностные заряды в диэлектрике обеспечивали бы типичные значения диэлектрической проницаемости. Будем считать, что это отклонение скважности Δξ (в %) линейно по внешнему полю, тогда для индуцированного разбалансного заряда одной связки «протон-электрон» можно записать

qi=(Δξ/50)e=(βE/50)e, (5.2.2)

где β - искомый коэффициент отклика скважности прерываний на внешнее поле, с размерностью %/(В/м). Полный индуцированный поверхностный заряд составит

Qi=Nαqi·nSS, (5.2.3)

где N – среднее число разбалансовых связок «протон-электрон», приходящихся на один атом, α - число задействованных атомных слоёв, nS – число атомов диэлектрика на единице поверхности, S – площадь поверхности диэлектрика, прилегающая к пластине конденсатора. Если Q – заряд конденсатора, то для диэлектрической проницаемости прокладки можно записать

ε=Q/(Q-Qi). (5.2.4)

Комбинируя выражения (5.2.2-5.2.4) и справедливое для плоского конденсатора выражение E=Q/(ε0S), для диэлектрической проницаемости прокладки окончательно получаем

ε = 1+(NαβnSe/50ε0). (5.2.5)

Из этого выражения следует, что для типичных твёрдых диэлектриков, имеющих значения ε=5 и nS~1019 м-2, при N=1 и α=1 величина коэффициента β составляет ~10-9 %/(В/м). Это означает, что зарядовые разбалансы, обеспечивающие свойства диэлектриков, даже при весьма сильных внешних полях являются ничтожными – что подчёркивает колоссальные энергетические возможности электрических взаимодействий, заложенные в веществе. Ничтожные зарядовые разбалансы, индуцируемые в слабых полях, не могут, например, заметно изменить отношение заряда к массе у иона и, таким образом, привести к ошибочным идентификациям в масс-спектроскопии.

Следует добавить, что зарядовые разбалансы не являются механическими подвижками связанных заряженных частиц. Поэтому зарядовые разбалансы не подвержены влиянию тепловых шумов – эта особенность усиливает правдоподобность нашей модели.