Между тем, этот феномен находит простое качественное объяснение на основе модели химической связи (5.7). Примем во внимание то обстоятельство, что, при циклических переключениях энергии возбуждения у пары связанных атомов, по крайней мере, один из них может пребывать не в основном своём состоянии, а в одном из вышележащих стационарных. При этом, как отмечалось ранее (5.1), энергия возбуждения у этого атома, т.е. энергия переменного зарядового разбаланса, отсчитывается от нуля, соответствующего задействованному стационарному уровню. Если эта энергия возбуждения безостановочно циклически перебрасывается на соседствующий атом и обратно, то пребывание атомарной валентной связки «протон-электрон» на возбуждённом стационарном уровне может длиться неопределённо долго, обеспечивая устойчивую химическую связь.
Теперь обратимся к Рис.5.8, на котором схематически изображены стационарные уровни энергии у двух связанных атомов, А и В. Пусть атом В пребывает на стационарном уровне В1, а атом А – в основном состоянии А0. Пусть энергия ионизации атома В с уровня В1 меньше, чем энергия уровня А1 в атоме А. Можно видеть, что энергия возбуждения Е*, которой обмениваются связанные атомы, имеет выделенные резонансные значения, которые соответствуют переходам в атоме В – с уровня В1 на вышележащие уровни В2,В3, и т.д. Эти резонансные значения и должны давать серию молекулярных линий поглощения, сгущающихся к порогу диссоциации D0 – который достигается, когда энергия возбуждения Е* становится равна разности энергий уровней В и В1. Диссоциация молекулы АВ является при этом следствием ионизации атома В, и можно видеть, что, при превышении энергией возбуждения Е* разности энергий уровней В и В1, начинается участок сплошного спектра, схематически обозначенный косой штриховкой. Верхняя граница этого участка должна соответствовать энергии уровня А1 – которая, как мы оговорили выше, превышает энергию ионизации атома В с уровня В1. Впрочем, нередки ситуации, когда энергия уровня А1 меньше, чем энергия ионизации атома В с уровня В1. Тогда порог диссоциации не достигается, и полоса сплошного спектра отсутствует.
Рис.5.8
Действительно, если атом А приобретает энергию возбуждения Е*, которая несколько больше энергии уровня А1, то атом А оказывается в стационарном возбуждённом состоянии А1, а от энергии возбуждения, как энергии переменного зарядового разбаланса, остаётся разность между энергией Е* и энергией уровня А1. Химическая связь может продолжать поддерживаться при циклическом обмене атомов этой остаточной энергией. По аналогии с вышеизложенным, для этой остаточной энергии также должны иметь место резонансные значения, соответствующие переходам между стационарными уровнями в атоме В. Таким образом, проясняется происхождение серий молекулярных линий поглощения, которые соответствуют таким большим исходным энергиям возбуждения, которые могут в разы превышать энергию ионизации атома В из его основного состояния.
Заметим, что мы качественно пояснили происхождение серий молекулярных линий и полос сплошного спектра лишь для одного частного случая: атом В пребывает в первом стационарном состоянии, а варьируется энергия возбуждения Е*, которую приобретает атом А. Рассмотрение других вариантов даёт гораздо более богатую модель спектра молекулы АВ.
Предложенная модель даёт естественное качественное объяснение того, что называется электронно-колебательными спектрами молекул. Эта модель хороша уже тем, что она легко разрешает парадокс, который до сих пор не нашёл объяснения в рамках традиционного подхода, а именно: почему двухатомная молекула с одинарной связью, которая диссоциирует при энергии возбуждения, попадающей в континуум в области, скажем, 3 эВ, отнюдь НЕ диссоциирует при энергии возбуждения, скажем, 15 эВ. Однако, мы изложили идеализированную картину, при которой положения колебательных серий линий и полос на спектрограммах в точности соответствовали бы положениям характеристических линий атомов, входящих в состав молекулы. В действительности, точного соответствия не наблюдается, хотя специалисты давно обращали внимание на «генетическую связь между атомными и молекулярными уровнями» [К2].
В частности, предложенная модель объясняет, в первом приближении, происхождение участка излучения Н2 в области 7.4-10.1 эВ (см. Рис.5.6), где поглощение Н2 отсутствует. Заметим, что верхняя граница этого участка почти совпадает с энергией первого стационарного уровня атома водорода, равной 10.2 эВ. Логично допустить, что в названном спектральном диапазоне могут излучать те молекулы Н2, у которых один из атомов находится на первом стационарном уровне. Происходящие при этом процессы поясним с помощью Рис.5.7. До момента излучения t2, атом p1-e1 находится в основном состоянии и имеет энергию зарядового разбаланса Е*; атом же p2-e2 находится в первом стационарном состоянии и не имеет энергии зарядового разбаланса. В момент t2, при переформировании валентных связок, атом, включающий протон p2, оказывается в основном состоянии и с энергией зарядового разбаланса Е*. Таким образом, энергия связи в этом атоме увеличивается на величину разности между 10.2 эВ и Е* - что и означает излучение соответствующего кванта молекулой.