На основе того, что мы уже успели сказать о работе Навигатора, мы можем объяснить, почему движение световой энергии, которое мы представляем как последовательность «практически мгновенных» квантовых перебросов, происходит всё-таки с конечной скоростью. Действительно, путь световой энергии прокладывает Навигатор, поэтому она никак не может обогнать переднего фронта волны расчётных вероятностей. Причём, до тех пор, пока Навигатор не выберет атома-получателя, перебрасываемая энергия находится на атоме-отправителе. Впрочем, возможны и такие ситуации: Навигатор начинает поиск, но не успевает его завершить из-за какого-либо события с атомом-отправителем, например, из-за потери им энергии возбуждения в результате столкновения с другим атомом. Тогда поиск прерывается – без каких-либо последствий для физического мира.
Объясняется и ещё одно известное свойство света: пересекающиеся пучки света не мешают друг другу (в линейном режиме). Мы до сих пор обсуждали отдельно взятый квантовый переброс, но физический мир бурлит ими, и для каждого возбуждённого атома работает свой канал Навигатора. Соответствующие различные волны расчётных вероятностей совместно сканируют одни и те же области пространства. Но разве могут эти волны мешать друг другу? Они являются, если можно так выразиться, информационной реальностью – по сути дела, параллельно проводимыми расчётами – и, конечно же, мешать друг другу не должны.
Уточним некоторые свойства волны расчётных вероятностей – в первую очередь, вид её пространственного профиля. Как уже упоминалось выше, этот профиль имеет периодичность: соседние слои наибольших вероятностей отстоят друг от друга на расстояние, которое играет роль «длины волны». Откуда Навигатор «знает», какую длину волны создавать у волны расчётных вероятностей? Длина волны λ связана с величиной энергии возбуждения E через соотношение λ=hc/E, т.е. длина волны «известна» сразу же после возбуждения атома-отправителя. Что же касается формы профиля волны расчётных вероятностей, то, в духе «цифровых» первооснов физического мира, эта форма представляет собой не синусоиду, а, скорее, гребёнку из узких пиков ненулевой вероятности переброса, разделённых промежутками нулевой вероятности переброса. Иллюстрацией результирующей волны в целом может быть набор вложенных друг в друга расширяющихся мыльных пузырей, оболочки которых соответствуют слоям ненулевой вероятности переброса.
Из вышеизложенного следует, что, для каждого момента времени, квантовый переброс энергии возбуждения может быть выполнен лишь на дискретные расстояния – через промежутки, равные длине волны – и что начальное распределение вероятностей переброса имеет сферическую симметрию. Однако, эта сферическая симметрия нарушается сразу после того, как передний фронт волны расчётных вероятностей дойдёт до ближайшего атома. Если этот атом не выбирается в качестве адресата, и на него сразу же не производится квантовый переброс, то этот атом идентифицируется Навигатором как неоднородность, которая, по аналогии с принципом Гюйгенса-Френеля, становится «источником» вторичной сферической волны расчётных вероятностей. Эта вторичная волна имеет ту же длину волны, что и первичная волна, и синхронизирована с ней по фазе следующим образом: очередная сфера ненулевых вероятностей вторичной волны начинает своё расширение в момент прохождения очередной сферы ненулевых вероятностей первичной волны. Тогда, как можно видеть, эти сферы у вторичной и первичной волн расширяются, сохраняя касания друг друга в точках, которые движутся вдоль геометрического луча, проведённого от центра первичной волны через центр вторичной волны. Примем во внимание, что суммарная расчётная вероятность переброса в точки, которые «накрывают» пики ненулевых вероятностей сразу двух волн – и первичной, и вторичной – существенно возрастает (в относительном исчислении; полная расчётная вероятность переброса для всей области, которую успел просканировать Навигатор, очевидно, всегда равна единице). Значит, существенно возрастает вероятность переброса в выделенном направлении – по тому самому геометрическому лучу.