1. При уменьшении скорости падающих электронов должна уменьшаться их глубина проникновения в кристалл, и, соответственно, должен уменьшаться эффективный рассеивающий объём кристалла, т.е. должна уменьшаться резкость дифракционных пучков. «Опыт этого, однако, не показывает… наблюдение дифракции в низких вольтах, как раз наоборот, чрезвычайно облегчается, и при малых энергиях оказывается возможным получение наиболее резких пучков» [К2].
2. Допущение разумного коэффициента поглощения потока электронов при углублении в кристалл «даёт, что количество электронов, рассеянных даже вторым атомным слоем кристалла, должно быть… меньше количества рассеянных первым слоем», как минимум, на порядок. «При этом делается непонятным само возникновение резких максимумов» [К2].
3. «Нанесение на рассеивающий кристалл плёнки другого металла в два атомных слоя всегда вызывает практически полное исчезновение первоначальной картины» [К2] – и появляется новая картина, соответствующая металлу этой плёнки. Этот факт прямо указывает на число поверхностных атомных слоёв, ответственных за рассеяние медленных электронов – что полностью отрицает концепцию рассеяния на объёмной решётке.
Всё это говорит о том, что никаких «волновых свойств» у электронов Дэвиссон и Джермер не обнаружили [Г2]. Их результаты, по-видимому, являются частным случаем явления, хорошо известного специалистам по низковольтной электронографии: «С изменением энергии падающих электронов дифракционные картины появляются и исчезают, сменяя друг друга. С увеличением энергии, например, вначале на общем фоне появляются слабые симметрично расположенные пятна-рефлексы, которые разгораются до максимальной яркости, а затем их яркость ослабевает, и рефлексы исчезают на ярком фоне. При дальнейшем увеличении энергии появляются рефлексы в других позициях и также проходят через максимум яркости при определённой энергии» [З1]. Не менее хорошо известно, что эти сменяющие друг друга дифракционные картины, как правило, не согласуются с предсказаниями волновой теории де Бройля. Некоторые пики, которые должны наблюдаться в согласии с этой теорией, отсутствуют вовсе, а, кроме того, всегда наблюдаются «лишние» пики [Л1,К3,Р1], которым приписывают дробные (!) порядки дифракции. Это означает полный отказ от концепции брэгговского отражения, на которой основана теория дифракции «электронных волн».
Чем же тогда были обусловлены пики рассеяния электронов у Дэвиссона и Джермера? На наш взгляд, они были обусловлены хорошо известным явлением, происходящим при бомбардировке поверхности металла медленными электронами – вторичной электронной эмиссией [Б1]. При таком подходе [Г2], объясняются не только вышеназванные особенности, не укладывающиеся в концепцию брэгговского отражения, но и тот факт, что электронные пики рассеяния, по сравнению с рентгеновскими пиками для тех же длин волн, имеют существенно большую угловую ширину и много большую энергетическую ширину. Но такой подход, конечно, не требует приписывания электронам волновых свойств – в согласии с указаниями различных исследователей [К2,Л1,К3,Р1], повторявших опыт Дэвиссона и Джермера.
Но к этим исследователям не прислушались. В дальнейшем было множество экспериментов, в которых волновые свойства электронов не доказывались, а уже использовались, как будто они есть на самом деле. Считалось, что, имея конкретную энергию после прохождения конкретного ускоряющего напряжения, электроны имеют конкретную длину волны – и, по результатам рассеяния в веществе этих «волн», судили об особенностях тех структур, на которых эти «волны», якобы, рассеивались. С учётом вышеизложенного ясно, что цена подобным суждениям – копейка в базарный день.
4.4. Автономные превращения энергии квантовых пульсаторов.
Теоретики приписывали статус физической реальности объектам с совершенно фантастическими энергетическими характеристиками. Так, удивительной находкой оказалась идея о физических полях – гравитационном, электромагнитном – с их бесконечными числами степеней свободы, а, значит, и с бесконечным энергосодержанием. Впоследствии физические поля проквантовали – и назвали «физическим вакуумом» состояние полей с минимальной возможной энергией (которая всё равно осталась бесконечной). Ещё больше оживили физическую картину мира «виртуальные частицы», которыми, якобы, бурлит физический вакуум. На этих виртуальных частиц теоретики имеют обыкновение сваливать ответственность за разного рода энергетические парадоксы – ведь виртуальная частица, якобы, способна произвести в локальности как угодно большое отклонение от закона сохранения энергии. Правда, такое отклонение длится, в согласии с принципом неопределённости, исключительно недолго – но теоретикам и этого хватает для решения своих проблем.