Любая плоская фигура, обладающая по крайней мере одной осью симметрии, считается симметричной, поскольку ее можно всеми точками наложить на зеркальное изображение. Математикам известны и многие другие виды симметрии (о некоторых из них пойдет речь в гл. 2), но в этой книге мы постоянно будем иметь дело только с симметрией отражения. Называя фигуру «симметричной» (независимо от числа измерений), мы всегда будем иметь в виду только одно: эта фигура идентична своему зеркальному изображению, то есть ее можно наложить на зеркальное изображение, не прибегая к поворотам в пространстве более высокой размерности.
Легко привести примеры и асимметричных плоских фигур. Так, например, фигуры, изображенные на рис. 8, не могут быть соединены со своими зеркальными изображениями. Если вы попытаетесь провести через центр любой из этих фигур линию, которая делила бы фигуру на зеркальные половинки, вы убедитесь, что сделать этого невозможно. Как бы вы ни приставляли зеркало, отражаемая часть вместе с отражением не образует первоначальной фигуры. По этой причине каждую асимметричную фигуру можно рисовать на плоскости двумя способами.
Некоторые заглавные буквы в алфавитах симметричны, а некоторые нет. Вот первое из упражнений, предлагаемых в этой книге (все упражнения перенумерованы и ответы приведены в конце книги):
Упражнение 1. Какие из заглавных букв русского алфавита асимметричны, а какие нет?
Попробуйте ответить на этот вопрос, не пользуясь зеркалом. Помните, что буква симметрична, если можно выбрать по крайней мере одну такую прямую, чтобы она делила букву на зеркальные половинки. Если такой оси симметрии нет, то буква асимметрична. Напечатайте на листке симметричные буквы и поднесите его к зеркалу. Когда буквы выбраны правильно, то всегда можно повернуть листок так, чтобы буквы в зеркале не отличались от обычных. Чтобы добиться этого, для разных букв листок придется поворачивать по-разному, потому что направления осей симметрии у разных букв не всегда совпадают. Буква «А», например, имеет вертикальную ось симметрии. Она не изменится в зеркале, если поднести к нему листок прямо, не поворачивая. Однако у «В» ось симметрии горизонтальная. Поначалу покажется, что отражение существенно отличается от самой буквы, но поверните листок—и вы увидите в зеркале обычное «В». Проверив в зеркале все буквы, которые вы сочтете симметричными, попробуйте провести для каждой из них все ее оси симметрии. Вам удастся это сделать для всех букв, кроме «О». Если рисовать «О» в виде эллипса, осей будет всего две, но мы нарисовали ее кружком — в этом случае число осей симметрии бесконечно.
Теперь поднесите к зеркалу листок с асимметричными буквами. Если они выбраны правильно, то, как бы вы ни вертели листок, ни одна из этих букв не будет выглядеть в зеркале «как настоящая». Все отражения асимметричных букв «получаются не такими». Рассмотрите эти буквы, и вы убедитесь, что для них невозможно провести оси симметрии. То, что свойства симметрии меняются от буквы к букве, дает возможность проделать ряд забавных фокусов с отражением слов в зеркале, но прежде чем рассказать о них (это будет сделано в гл. 4), мы должны посвятить следующую главу рассмотрению симметрии и асимметрии фигур в 3-пространстве, в том трехмерном мире, где живем мы сами.
Глава 3. Трехмерный мир