Выбрать главу

Когда в природе что-нибудь остается неизменным, физики любят выражать это постоянство в форме закона сохранения. Например, закон сохранения массы-энергии утверждает, что полное количество массы-энергии в природе постоянно. Масса может переходить в энергию, и наоборот (в соответствии с известной формулой Эйнштейна Е = mc2), но при этом никогда не происходит увеличения или потери массы-энергии. Закон сохранения четности предполагает неизменность фундаментальной зеркальной симметрии Вселенной, отсутствие предпочтения «правому» или «левому» в основных законах природы.

Понятие «четность» было введено впервые математиками с целью разграничения четных и нечетных чисел. Если два целых числа оба четны или нечетны, то говорят, что они имеют одинаковую четность. Если одно из них четно, а другое нет, то их четности противоположны. Оказалось, что это понятие может быть различным образом применено к любой ситуации, когда предметы явно разделяются на два взаимно исключающих класса, которые могут быть связаны с четными или нечетными числами. Рассмотрим простейший пример. Возьмем три монеты и положим их рядом на столе «орлом» кверху. Будем затем переворачивать монеты по одной в любом порядке независимо от того, какую монету переворачивали перед этим (пусть даже все время одну и ту же монету). Если общее число переворачиваний монет четное, то, каково бы ни было это число — 2, 74 или 3496, мы всегда получим одну из четырех следующих комбинаций:

Опять положим наши монеты «орлом» кверху. Сделаем теперь нечетное число переворачиваний, снова каждый раз выбирая монету независимо от того, какая бралась в предыдущий раз. Можно убедиться, что в итоге всегда получится один из четырех вариантов, изображенных на следующем рисунке (стр. 195).

Про первый набор комбинаций можно сказать, что он имеет положительную четность; про второй — отрицательную. Эксперимент показывает, что четность комбинации сохраняется при любом четном числе переворачиваний. Если вы начнете с четной комбинации и произведете, скажем, десять переворачиваний, то конечная комбинация, очевидно, будет четной. Если же вы возьмете нечетную комбинацию и затем снова перевернете монеты десять раз, вы, безусловно, получите в итоге нечетный набор. Напротив, любая комбинация изменит свою четность, если в ней производится нечетное число переворачиваний.

Многие фокусы с картами, монетами и другими предметами основаны именно на этом. Предложите, например, кому-нибудь разложить на столе десять монет.

После этого отвернитесь и командуйте вашему партнеру, чтобы он один раз (на каждую вашу команду) переворачивал любую монету. Вы можете прекратить фокус в любой момент, когда этого захочет ваш партнер, повернуться к нему и угадать, как лежит накрытая его рукой монета. Это делается с помощью простого применения того, что математики называют «проверкой на четность». Перед тем как отвернуться, сосчитайте число «орлов» и запомните, четное оно или нечетное. Если ваш партнер переворачивал монеты четное число раз, то, как вы знаете, четность числа «орлов» должна остаться той же; нечетное же число переворачиваний меняет четность. Поэтому повернувшись и быстро сосчитав число «орлов», вы сразу сможете понять, как лежит спрятанная монета. Видоизмените фокус: предложите партнеру накрыть рукой не одну, а две монеты и после аналогичным образом «угадайте», одинаково они лежат или нет.

Упражнение 14. Поставьте шесть стаканов в ряд: три вверх дном, а три обычным образом. Возьмите в каждую руку по стакану и одновременно переверните их. (Если стакан стоял вверх дном, то теперь он станет нормально, и наоборот.) Проделайте то же самое с любой другой парой. Можете продолжать так сколько угодно. Можно ли добиться, чтобы все стаканы стояли одинаково — нормально или вверх дном? Как подтвердить ответ математически?

Понятие четности может быть применено к вращающимся телам в трехмерном пространстве следующим образом. Рассмотрим вращающийся цилиндр, показанный сплошными линиями на рис. 57. Положение точек на этом цилиндре может быть определено относительно координатной системы трех взаимно перпендикулярных осей, обозначенных, как обычно, буквами х, у, z. Местонахождение любой точки на цилиндре определяется тремя числами. Первое дает измеренное вдоль оси х расстояние от данной точки до плоскости, проходящей через начало координат перпендикулярно этой оси. Второе число есть аналогичная величина, измеренная вдоль оси у; третье — вдоль оси z.