Затем маятник снова качнулся: к настоящему времени физики обнаружили от 30 до 100 различных элементарных частиц. Это число неопределенно потому, что неясно, какие частицы нужно называть «элементарными», а какие — различными состояниями одной и той же частицы. Такая вновь обнаруженная сложность семейства элементарных частиц заставляет физиков стремиться упростить ее подобно тому, как на основании боровской модели строения атома и ее последующего развития удалось объяснить периодическую таблицу элементов.
Писатель Сноу сравнивает известные в настоящее время элементарные частицы с коллекцией загадочных оттисков, а физик Р. Оппенгеймер добавляет, что они «вызывающе непонятны».
Никто не может предсказать, когда маятник наших представлений снова качнется к простоте.
Некоторые физики, занимающиеся проблемой элементарных частиц, считают, что в недалеком будущем на основе небольшого числа простых математических предположений удастся создать стройную новую теорию, объясняющую свойства элементарных частиц. Поразительный успех в этом направлении был независимо достигнут в 1961 году М. Гелл-Манном в Калифорнийском технологическом институте и Ю. Нееманом, полковником израильской армии, внезапно решившим стать физиком. Они предложили прекрасную схему классификации элементарных частиц, которая теперь носит название «восьмеричного пути» (по аналогии с буддийским религиозным термином), поскольку в ней каждой частице приписывается восемь квантовых чисел для восьми различных сохраняющихся величин[43]. Эти квантовые числа оказываются связанными друг с другом посредством симметрии простых групповых структур, известных в математике под названием «групп Ли» (по имени норвежского математика Софуса Ли). Восьмеричная картина была в 1964 году блестяще подтверждена сообщением об открытии в Брукхэйвенской национальной лаборатории новой частицы, получившей название «омега-минус». Многие свойства этой частицы были предсказаны именно в рамках восьмеричной гипотезы — поистине замечательный пример значения теории групп (привлеченной в квантовую механику Вигнером) для понимания свойств новых частиц. Пользуясь метафорой доктора Сноу, восьмеричный путь можно сравнить с той схемой, по которой нужно наклеить на альбомную страницу на первый взгляд совершенно случайные почтовые марки, чтобы составить приятный для глаза симметричный узор цветов и изображений. Частицы не столь уж «вызывающе непонятны», если их правильно классифицировать! Другие физики, занимающиеся проблемой элементарных частиц, не так оптимистичны. Одни из них предвидят замедление «качаний маятника» и склонны думать, что настоящая теория частиц не будет сформулирована до тех пор, пока не будет накоплено много новых данных. Они опасаются, что эти новые сведения будет нелегко получить. Даже если восьмеричный путь классификации элементарных частиц окажется столь же успешным, каким в свое время была периодическая система элементов, понадобятся еще десятилетия, чтобы сама эта классификация была полностью объяснена основными законами природы.
Прекратит ли когда-нибудь наш маятник свое движение? Или имеется бесконечное число уровней микроструктуры, подобно игрушечным матрешкам, вложенным одна в другую? Эдвард Теллер в 1962 году писал: «Нет необходимости приписывать электрону внутреннюю структуру... — и добавлял: — пока». Известное «трио» — протон, нейтрон и электрон — не было твердо установлено до 1932 года, когда Джеймс Чедвик в Кэвендишской лаборатории в Кембридже наконец уловил нейтрон[44]. О существовании этой частицы подозревали задолго до этого, и физики облегченно вздохнули, когда нейтрон был наконец обнаружен. Однако не прошло и года, как их самоуспокоенности был нанесен тяжелый удар. Карл Д. Андерсон в Калифорнийском технологическом институте, просматривая траекторию космических частиц, сфотографированных в камере Вильсона, обнаружил след частицы, которая должна была быть электроном, но почему-то искривила свою траекторию в магнитном поле не так, как это следовало бы электрону, а как раз наоборот. Проанализировав всевозможные объяснения обнаруженной аномалии, Андерсон пришел к выводу, что рассматриваемый трек мог быть образован только электроном, имеющим положительный заряд. Он дал этой частице название позитрон, и оно так и закрепилось.
43
Это неверно. В схеме Гелл-Мана и Неемана фигурируют тяжелые частицы (протон, нейтрон, Λ, Σ и Ξ гипероны объединены в «мультиплет» из 8 частиц). Также в 2 восьмерки объединены мезоны, от этих восьмерок и происходит название теории. —
44
В конце 1890-х годов Джеймс Томсон, также в Кембридже, открыл электрон. Существование протона было твердо установлено пятнадцать лет спустя Эрнстом Резерфордом (впоследствии лордом Резерфордом) в Манчестерском университете.