Чтобы понять, что это действительно так, представьте, что к вам приближается нейтрино с правой спиральностью. Вы смотрите ему в «лицо» и видите правовинтовую спираль. Нейтрино проходит сквозь вас и начинает удаляться. Вы оборачиваетесь, видите «спину» нейтрино и убеждаетесь, что его движение по-прежнему описывается правовинтовой спиралью. Теперь допустим, что вы движетесь в ту же сторону, что и правовинтовое нейтрино, но со скоростью, равной удвоенной скорости частицы. В вашей системе отсчета, которая ничуть не хуже любой другой (теория относительности отрицает существование «преимущественных» систем координат), нейтрино будет двигаться от вас и вы увидите левую спираль. То же самое будет, если вы станете догонять нейтрино. С точки зрения внешнего наблюдателя, например, в «системе неподвижных звезд» вы догоняете правовинтовое нейтрино, но с вашей точки зрения это выглядит как движение левовинтового нейтрино к вам.
Так, может быть, нейтрино в самом деле бывает либо правовинтовым, либо левовинтовым в зависимости от скорости движения наблюдателя? Оказывается, нет. Дело в том, что нейтрино, как и фотон, движется со скоростью света, а теория относительности не позволяет никакому наблюдателю двигаться со сверхсветовой скоростью. Поэтому наблюдатель всегда одинаково оценивает характер спиральности данного нейтрино, движется ли он от частицы или навстречу ей, и ему никогда не удастся найти систему координат, относительно которой нейтрино изменило бы направление своего вращения. Короче говоря, спиральность нейтрино одинакова для всех наблюдателей.
Мысль о том, что вращающаяся частица может постоянно находиться в одной из двух зеркально сопряженных винтовых форм, была еще в 1929 году высказана знаменитым немецким математиком Германом Вейлем. Для такой гипотезы Вейль совершенно не располагал какой бы то ни было экспериментальной информацией; просто он считал, что этим демонстрируется очень простая и математически изящная теория. Тогда никто не придал значения теории Вейля. Почему? Да потому, что она шла вразрез с законом сохранения четности, внося в природу необъяснимую асимметрию. Как только несохранение четности было установлено, теорию Вейля признали пророческой. Действительно, вскоре появились указания на то, что нейтрино имеет свою античастицу и что эти две частицы различаются именно так, как предполагал Вейль. (Вейль умер в 1955 году, за два года до возрождения своей теории.)
Эта «двухкомпонентная» теория нейтрино, как ее стали называть, была в 1957 году независимо предложена несколькими физиками-теоретиками: Ли и Яном, Абусом Саламом из Пакистана и советским ученым Львом Давидовичем Ландау. Имеются многочисленные свидетельства того, что эта теория в своей существенной части верна. В бета-распаде при испускании электронов вместе с ними испускаются антинейтрино, вращение которых, если смотреть «из ядра», происходит по часовой стрелке, то есть они закручиваются около своих траекторий по правым спиралям. Напротив, при распаде антинейтрино в процессе анти-бета-распада вылетающие позитроны сопровождаются нейтрино, описывающими левосторонние спирали (рис. 63). Так впервые в истории физики элементарных частиц было установлено наличие стабильной асимметрической структуры частицы (структура нейтрино — это просто определенный вид связи между спином и направлением движения). Нейтрино и антинейтрино — первые из известных нам на уровне элементарных частиц аналоги право- и левосторонних молекул Пастера!
В 1957 году несколько физиков, в их числе Ли и Ян, развили теорию еще дальше[57]. Они предположили, что существуют два типа пар нейтрино — антинейтрино: одна связана с распадами, при которых испускаются электроны, а другая — с распадами, в которых участвуют мю-мезоны. Их предположение получило подтверждение в эксперименте группы физиков из Колумбийского университета и Брукхейвенской национальной лаборатории, работавших на самом большом в мире (тогда)[58] синхротроне с жесткой фокусировкой в Брукхейвене (Яфанг, Лонг-Айленд, штат Нью-Йорк).
Нейтрино нового типа и их античастицы сопровождают пионный распад с образованием мю-мезонов[59], Пока не ясно, что означает это замечательное открытие с точки зрения структуры нейтрино. Возможно, нейтрино обоих типов вращаются в одну сторону, а их античастицы — в другую; а может быть, нейтрино каждою типа вращается так, как антинейтрино другого типа. Это еще предстоит установить. Газета «Нью-Йорк таймс» в номере от 1 июля 1962 года приводит слова одного физика: «Это можно сравнить с тем, как если бы мы открыли два вида вакуума!»
57
Гипотезу второго нейтрино выдвинули первыми М. Л. Марков и Б. М. Понтекорво. —
59
Мю-мезон, открытый в 1936 году, — одна из самых загадочных частиц. Во всех взаимодействиях он ведет себя как электрон, но его масса в 200 раз больше массы электрона. Все происходит как если бы электрон по каким-то причинам стал в 200 раз тяжелее. Является ли мю-мезон одним из состояний электрона или это совершенно независимая от него частица? Никто не знает. [См. статью Шелдона Неймана «Мюон» в 3-м выпуске серии «Над чем думают физики», посвященном элементарным частицам, стр. 35—50; изд-во «Наука», Москва, 1965. —