Но уже в IV веке до нашей эры Аристотель возражал: «Если истечения дают видения, то почему мы не видим в темноте?» А Эмпедокл считал, что кроме глазных лучей есть и такие, которые идут от самих предметов. Платон предполагал иное: от предметов исходит флюид, и он встречается со светом, излучаемым глазами человека. Афинский ученый Эпикур и римский философ-поэт Лукреций Кар утверждали, что от светящихся тел отделяются тончайшие пленки, повторяющие форму видимых предметов. Попадая в глаза, такие пленки создают их точный облик.
Демокрит перенес идеи атомизма и на свет. Он полагал, что зрение вызывают мелкие атомы, испускаемые светящимися телами.
В этот период познания света Пифагор, Эвклид и Птолемей создали теорию отражения света и геометрической оптики. В XV веке оптика — в переводе «наука о зрении» — стала самостоятельным разделом физики.
XVII век по праву называют «золотым веком оптики». В те годы были открыты многие новые свойства света, изобретены телескоп и микроскоп. В 1604 году Кеплер объяснил действие очковых линз и описал явление полного отражения света. Точную формулировку закона преломления света нашли Снеллиус и Гюйгенс, Декарт и Ферма. В 1663 году Бойль описал явление интерференции, а в 1665 году Гримальди описал дифракцию. В том же году Ньютон произвел свои знаменитые опыты по разложению солнечного света призмами.
Это явление было известно еще в I веке, но осталось непонятым. Ньютон писал секретарю Королевского общества: «Цвета не являются, как думают обыкновенно, видоизменениями света, претерпеваемыми им при преломлении или отражении от естественных тел, но суть — первоначальные прирожденные свойства света». Он утверждал, что белый цвет — это совокупность простых цветов, составляющих спектр, а свет — поток мельчайших частиц.
Впервые о корпускулярной и волновой природе света сказали французский ученый Пьер Гассенди и итальянский — Франческо Гримальди. Гассенди писал: «Свет есть поток мельчайших корпускул, которые выбрасываются светящимися телами во все стороны и движутся в окружающем пространстве с огромной скоростью». Гримальди утверждал иное: «Распространение света подобно распространению волн на воде». Голландский исследователь Христиан Гюйгенс разработал математический аппарат волновой теории света и объяснил двойное лучепреломление.
Все известные к тому времени оптические явления пытались объяснить различными, даже диаметрально противоположными характеристиками света. Но они относились в основном к представлениям о форме, виде излучений. Для проникновения в их сущность, для выявления «материала» света тогда еще недоставало опытных данных.
Ньютон оставил этот вопрос открытым: «Его свойства… могут быть объяснены многими другими гипотезами». Он считал, что нужна теория, которая сочетала бы волновые и корпускулярные представления о свете. К такому же выводу через много лет пришел и Эйнштейн.
Последующее развитие теории света Томасом Юнгом и Огюстеном Френелем, открытие поперечности волн света, его поляризации и другие открытия, также не дали ответа на вопрос, что такое свет не по форме, а по содержанию, из какого «материала» он образован.
Первой попыткой ответа на такой вопрос была, видимо, электромагнитная теория света.
В 1831 году английский физик Майкл Фарадей открыл явление электромагнитной индукции, взаимопорождение электрических и магнитных полей, а в 1846 году — изменение плоскости поляризации света в магнитном поле. Это стало первым экспериментальным свидетельством связи оптических и электромагнитных явлений. В 1857 году немецкий физик Густав Кирхгоф показал, что продольное электрическое возмущение распространяется в проводе со скоростью, равной скорости света. Появилось основание для отождествления обоих явлений, хотя общим для них была лишь скорость их движения, причем в разных средах — в проводе и в вакууме или в воздухе.
В 1860–1865 годах соотечественник Фарадея Джеймс Максвелл облек его представления в математические уравнения, связывающие воедино магнитные и электрические силовые линии. Из них следует, что «свет и магнетизм являются проявлением одной и той же субстанции… Свет является электромагнитным возмущением, распространяющимся через поле», — писал Максвелл. Но тогда его теория признавалась не многими учеными.
В 1879 году Немецкая академия наук объявила конкурс с целью поиска экспериментальных доказательств электромагнитной природы света. Не признавая теорию Максвелла, немецкий физик Генрих Герц взялся доказать отсутствие электромагнитных волн. А показал обратное: «Описанные опыты доказывают тождественность света, теплового излучения и электродинамического волнового движения».