Выбрать главу

Здесь мы прервем общее введение, чтобы глубже познакомиться с некоторыми основополагающими представлениями, едва упомянутыми нами ранее. После рассмотрения наиболее элементарных с современной точки зрения составных частей вещества мы перейдем к обсуждению явлений, происходящих в макроскопическом масштабе, таких, например, как сверхтекучесть, чтобы показать, как на этом уровне проявляются наиболее скрытые свойства материи.

2. Квантование

Понятие «кванта» лежит в основе всей атомной физики, и его использование оказало на развитие техники гораздо более сильное влияние, чем теория относительности. По этой причине мне кажется уместным затратить некоторое время, чтобы пояснить природу квантовой механики.

Механика

Пространство (кантовское трехмерное) заполнено материей, движущейся под действием сил, вызванных самой же материей. Цель физики состоит в выявлении природы этих сил и в том, чтобы представить их в лаконичном математическом виде. «Объяснить» силы – значит вывести для них математическое выражение из малого числа аксиом, причем эти выражения должны быть достаточно простыми и применимы к множеству разнообразных явлений. Так, общая теория относительности объясняет гравитационные силы, а уравнения Максвелла объясняют силы электромагнитные и природу света.

Задача механики – математически описать движения материальных тел, если известны силы, действующие на эти тела. Ньютон открыл закон всемирного тяготения, но, что еще важнее, он также ввел формализм классической механики, и это позволило ему вычислить с хорошей точностью орбиты планет и их взаимодействие. к концу девятнадцатого столетия понятие механики претерпело значительные изменения по сравнению с исходным представлением Ньютона; Лагранж сформулировал принцип действия, Максвелл вывел уравнения электромагнитного поля, использовав определенную аналогию с механикой сплошных сред.

Модель атома Резерфорда

Мы уже обсуждали кризис, приведший к созданию релятивистской механики. Столь же интересен и кризис, который привел к возникновению понятия «кванта». Благодаря опытам Томсона к началу нашего века стало ясно, что электроны представляют собой отрицательно заряженные частицы, являющиеся составной частью атома. Электрический ток является не чем иным, как упорядоченным движением электронов вдоль металлического провода; в этом смысле электрон – это «квант» электричества.

Исходя из такой информации, Резерфорд предложил планетарную модель атома. Согласно этой модели, электроны вращаются, как планеты, вокруг центрального положительно заряженного ядра, которое притягивает их подобно Солнцу. Напомним, что заряды разных знаков притягиваются, а одинаковых – отталкиваются. Такая аналогия между атомом и Солнечной системой сразу же захватила воображение большинства людей. Она действительно очень полезна, поскольку позволяет создать зрительный образ атома, а также избежать длинных разъяснений. Тем не менее пользоваться аналогией можно только до определенного предела. Электроны все строго одинаковы и энергично отталкиваются друг от друга, поскольку справедлив принцип Паули, запрещающий им занимать одно и то же состояние. Ни одно из этих свойств не имеет планетарного аналога.

Основной недостаток модели Резерфорда следует из природы электрических зарядов. Заряд, на который не действуют силы, движется равномерно и прямолинейно. Если же на него действует магнитное поле или притяжение какого-нибудь атомного ядра, то траектория заряда будет искривлена; из теории Максвелла следует, что такой заряд должен испускать электромагнитные волны и что при этом он потеряет часть своей энергии. на самом деле единственный способ произвести электромагнитные волны состоит как раз в том, чтобы «потрясти» какие-нибудь заряды, что очень просто сделать, если речь идет об электронах.

Итак, электрон внутри атома должен излучать, т.е. непрерывно терять энергию, так что в конце концов он должен будет упасть на ядро. Таким образом, атом Резерфорда оказывается нестабильным и должен в своем развитии дойти до коллапса, излучив при этом вспышку света, что полностью противоречит наблюдаемому факту стабильности вещества. Эти трудности модели стали особенно ясны во время Сольвейского конгресса 1911 г. Как при чтении трудов конгресса, так и в личных беседах с Резерфордом датчанин Нильс Бор имел возможность осознать недостатки и достоинства такой модели. По какой же причине орбиты электронов оказываются стабильными?