Он посмотрел на Эвариста с видом человека, пришедшего к окончательному заключению.
— Надеюсь, теперь я убедил вас.
«Нужно кончать этот разговор, — думал Эварист, — кончать во что бы то ни стало. Если я пробуду здесь еще секунду, я плюну тебе в лицо, иезуит».
— Да, убедили, мсье, — покорно сказал он. Сказал — и будто самому себе плюнул в лицо.
Год 1827
Эварист вернулся во второй класс, к прежним лекциям, к прежней скуке среди новых одноклассников.
Жутко было снова браться за однообразное повторение знакомой программы. Эварист решил — впервые — приняться за математику. Этот предмет не пользовался успехом у учащихся. На факультете математику не считали настолько важной, чтобы включить ее в список обязательных дисциплин. В результате четыре раза в неделю собиралась разношерстная группа учеников третьего, второго и риторического классов, чтобы осилить начальные ступени геометрии. Когда Эварист в последнем триместре поступил в этот класс, ученики наполовину одолели «Начала геометрии», написанные великим математиком Адрианом Мари Лежандром, — книгу, влияние которой испытали учебники геометрии грядущих лет. На вводном уроке Эварист раскрыл книгу Лежандра и прочитал первые фразы:
«I. Геометрия — наука, целью которой является измерение пространства. Пространство имеет три измерения: длину, ширину и высоту.
II. Линия — это длина, не имеющая ширины. Концы линии называются точками; точка не обладает протяженностью,
III. Прямая линия — кратчайший путь от одной точки к другой.
IV. Каждая линия, не являющаяся прямой и не состоящая из прямых, является кривой».
Следующая фраза относилась к рисунку. Рисунки не прерывали текста, они были собраны в конце. Эварист развернул первый лист чертежей, прочитал текст, взглянул на соответствующую фигуру. Затем он быстро миновал многочисленные определения и подошел к следующему разделу, начинающемуся словами:
«Аксиома есть положение, истинность которого самоочевидна».
Он подумал: «Что же очевидно само собой? Что очевидно одному, может не быть очевидным для другого. Существует ли нечто столь очевидное, что само собой ясно для всех?» Он прочел:
«Теорема есть истина, которая становится очевидной путем рассуждения, именуемого доказательством».
Он думал: «Оказывается, геометрия занимается истиной. Существуют теоремы, которые соответствуют истине. Цель рассуждений — сделать истинность этих теорем очевидной. Но, разумеется, их истинность может быть очевидной лишь настолько, насколько очевидна истинность аксиом, на которых они построены. На аксиомах держится все здание геометрии. Каковы же эти аксиомы?» Ответ он нашел, перевернув страницу:
«Аксиомы
1. Две величины, равные третьей, равны между собой.
2. Целое больше, чем любая из его частей.
3. Целое равно сумме составляющих его частей.
4. Две точки можно соединить только одной прямой».
Он читал страницу за страницей, и перед ним, простое и прекрасное, как греческий храм, вставало здание геометрии. Читая быстро, он видел не только частные теоремы, но их взаимосвязь, планировку целого, величие самой структуры геометрии. Он поймал себя на том, что угадывает, знает заранее, что будет сказано дальше. Он увидел, как здание растет у него на глазах. Вскоре все окружающее: класс, товарищи, надзиратели, звуки, запахи — исчезло. Абстрактные геометрические теоремы стали более осязаемыми, чем мир вещей. Здание геометрии все росло у него в голове. Читая теоремы, он почти всегда молниеносно видел, как их можно доказать, и тут же, в подтверждение своих мыслей, просматривал текст и рисунки. Скоро он мог пропускать доказательства: многие теоремы он предвидел. У него было такое чувство, как будто он знает геометрию очень, очень давно, но знание было скрыто от него темной пеленой. Чтение книги Лежандра сорвало пелену и открыло ему греческий храм. Казалось, чьи-то сильные, надежные руки унесли его из Луи-ле-Гран. Он больше не чувствовал себя несчастным: Луи-ле-Гран перестал существовать для него.