Выбрать главу

1. От всякого мужчины до всякого мужчины можно провести женщину.

2. Ограниченную женщину можно непрерывно продолжать по прямой.

3. Из всякого мужчины всякой пивной кружкой может быть описан круг.

Евклид делал и другие ошибки — сугубо логические, и они привели его к доказательствам теорем, в которых некоторые стадии оказались необоснованными. Например, в самом первом предложении он заявляет, что равносторонний треугольник может быть построен на любом отрезке прямой. В доказательстве он строит два круга, центры каждого из которых находятся на концах отрезка, и у каждого радиус равен длине этого отрезка. Далее он берет точку, в которой эти окружности пересекаются. Хотя рисование окружностей нам эту точку ясно покажет, Евклид не дает никаких формальных гарантий существования этой точки. По сути, его системе не достает постулата, обещающего непрерывность линий или окружностей, т. е. что в них нет разрывов. Кроме того, он не сумел распознать и другие допущения, применяемые им в доказательствах, например, что точки и прямые существуют, что не все точки лежат на одной прямой и что на любой прямой есть как минимум две точки.

В другом доказательстве он неявно допустил, что, если три точки лежат на одной прямой, мы можем определять одну из них как лежащую между двумя другими. Ничто в его постулатах или определениях не дает нам доказать это. На деле это допущение — своего рода требование прямизны: оно не допускает кривых, поскольку такие линии могут образовывать замкнутую петлю — к примеру, круг, — и тогда ни одну точку на ней нельзя считать лежащей между двумя другими.

Некоторые возражения доказательствам Евклида смотрятся как придирки, однако невинные очевидные допущения без всяких видимых последствий могут иногда равняться серьезным теоретическим утверждениям. К примеру, допущение существования всего одного треугольника, чья сумма углов равна 180°, позволяет доказать, что у всех треугольников сумма углов составляет 180°, а также позволяет доказать постулат параллельности.

В 1871 году прусский математик Феликс Клейн[187] показал, как устранить очевидное противоречие в сферической модели эллиптического пространства Римана, усовершенствовав попутно и Евклида[188]. Вскоре после этого математики вроде Бельтрами и Пуанкаре предложили свои новые модели и подходы к геометрии. В 1894 году итальянский логик Джузеппе Пеано выдвинул новый набор аксиом для определения евклидовой геометрии[189]. В 1899 году Гильберт, не знакомый с работами Пеано, выдал свою версию формулировки геометрии — в наиболее распространенном ныне виде[190].

Гильберт полностью посвятил себя прояснению фундаментальных основ геометрии (а впоследствии помог развить общую теорию относительности Эйнштейна). Он многократно пересматривал свои формулировки — до самой смерти в 1943 году. Первый шаг его метода — превращение неявных допущений Евклида в развернутые утверждения. В свою систему Гильберт — по крайней мере в седьмом издании своего труда в 1930 году, — включил восемь не определенных понятий и увеличил число аксиом Евклида с десяти (включая общие утверждения) до двадцати[191]. Аксиомы Гильберта разделили на четыре группы. Они включают в себя не опознанные Евклидом допущения вроде тех, что мы уже рассмотрели:

Аксиома I-3: Каждой прямой a принадлежат по крайней мере две точки. Существуют по крайней мере три точки, не принадлежащие одной прямой.

Аксиома II-3: Среди любых трех точек, лежащих на одной прямой, существует не более одной точки, лежащей между двумя другими.

Гильберт и другие ученые доказали, что все свойства евклидова пространства можно вывести из этих аксиом.

* * *

Революция искривленного пространства глубоко повлияла на все области математики. Примерно со времен Евклида и до работ Гаусса и Римана, обнаруженных посмертно, математика была по большей части дисциплиной прагматической. Евклидова структура воспринималась как описание физического пространства. Математика в некотором смысле была разновидностью физики. Вопросы непротиворечивости математических теорий казались порожними — доказательства следовало искать в физическом мире. Но к 1900 году математики осознали, что аксиомы — спорные утверждения, они суть всего лишь основа системы, следствия которой необходимо изучать в некоем подобии умозрительной игры. Внезапно математические пространства превратились в абстрактные логические конструкты. Природа физического пространства стала самостоятельным предметом, вопросом физики, а не математики.

вернуться

187

Кляйн

вернуться

188

Gray, стр. 155.

вернуться

189

Kline, Mathematical Thought, стр. 1010.

вернуться

190

Более глубокое представление об аксиомах Гильберта можно получить у Гринберга, стр. 58–84.

вернуться

191

Kline, Mathematical Thought, стр. 1010–1015.