Выбрать главу

Перед математиками встал вопрос совсем нового свойства: доказательство логической непротиворечивости их построений. Понятие доказательства, переместившееся за последние века развития расчетных методик на заднее сиденье, вновь стало главенствующим. Состоятельна ли геометрия Евклида? Самый лобовой способ доказать непротиворечивость логической системы — доказать все мыслимые теоремы и продемонстрировать, что ни одна не противоречит другой. Поскольку существует бесконечное количество возможных теорем, такой подход годится лишь тем, кто планирует жить вечно. Гильберт опробовал иную тактику. Как и Декарт с Риманом, Гильберт определили точки в пространстве через числа. В случае с двухмерным пространством, например, каждая точка соответствует паре действительных чисел. Превратив точки в числа, Гильберт смог перевести все фундаментальные геометрические понятия и аксиомы в арифметические. Так доказательство любой геометрической теоремы переводится на язык арифметических или алгебраических действий с координатами. А поскольку любое геометрическое доказательство следует логически из аксиом, арифметическая интерпретация должна вытекать из аксиом, облеченных в арифметическую форму. Если в геометрии возникает противоречие, оно проявится и при переводе на язык арифметики, а если арифметика непротиворечива, стало быть, стройны и гильбертовы формулировки евклидовой геометрии (для неевклидовых геометрий эти действия тоже были позднее проделаны). Яснее некуда? Хотя в итоге Гильберту и не удалось доказать абсолютную непротиворечивость геометрии, доказать относительную непротиворечивость он все-таки смог.

Из-за бесконечности числа возможных теорем абсолютная непротиворечивость геометрии, арифметики и, если уж на то пошло, всей математики — дело куда более трудоемкое. Чтобы разобраться и с этим, математики изобрели абстрактную теорию объектов, имеющую с ними дело на самом общем уровне, независимо от всяких особенностей того, чем они на самом деле являются. Эта теория, которую ныне преподают в большинстве общеобразовательных школ, называется теорией множеств.

И все-таки даже самая простая теория множеств сталкивается с путаными парадоксами: один такой был опубликован в 1908 году в малоизвестном журнале «Abhandlung der Friesschen Schule» Куртом Греллингом и Леонардом Нелсоном. Греллинг и Нелсон рассматривают множество слов. Возьмем, во-первых, множество всех прилагательных, описывающих сами слова. Например, слово «двадцатиоднобуквенный» само, да, состоит из двадцати одной буквы, а прилагательное «многосложный» — многосложно. В пику этому множеству есть множество всех прилагательных, которые себя не описывают. На ум почему-то приходят слова типа «хорошо написанный», «поразительный» и «другу рекомендуемый» (если в этой книге и есть хоть одно предложение, которое стоит вызубрить, — вот оно). Последнее множество называется гетерологическим — вероятно, оттого, что «гетерологический» само по себе многосложно.

Красота? Но есть, однако, закавыка: а «гетерологический» — гетерологическое слово? Если да, значит, оно себя описывает, следовательно, оно таковым не является. Раз оно таковым не является, значит, оно себя не описывает, а следовательно — является. Вот что математики называют парадоксом; для не-математика это всего лишь знакомая безвыигрышная ситуация (понятие, придуманное математиками, дай им бог здоровья)[192].

* * *

В 1903 году Бетран Расселл, без пяти минут лорд Расселл, попытался навести порядок, предположив в своей скромной книге под названием «Принципы математики», что вся математика должна выводиться из логики. Совместно со своим коллегой по Оксфорду Алфредом Нортом Уайтхедом он попытался добиться такой выводимости — или хотя бы показать, как это сделать, — в трехтомном магнум-опусе, изданном между 1910 и 1913 годами. Вероятно, потому, что этот труд был серьезнее публикации 1903 года, он получил латинское название «Principia Mathematica». В «Principia» Расселл и Уайтхед заявили, что свели всю математику к единой системе основных аксиом, из которых можно доказать все теоремы математики, подобно евклидовой системе применительно к геометрии. В их системе даже такие фундаментальные понятия как числа рассматривались как эмпирические конструкты, которые необходимо обосновывать более глубокими аксиоматическими структурами.

Гильберт отнесся к этим заявлениям скептически. Он подначил математиков строго доказать успешность программы Расселла и Уайтхеда. Этот вопрос отложили насовсем в 1931 году шокирующей теоремой Курта Гёделя[193]: он доказал, что в системе достаточной сложности — в теории чисел, к примеру, — должно существовать утверждение, чью истинность или ложность невозможно доказать. Это уничтожает утверждение Расселла и Уайтхеда: они не только не показали, как именно все математические теоремы можно вывести из логики, но и в принципе не могли бы этого сделать!

вернуться

192

Понятие из области математики, называемой теорией игр. — Прим. пер.

вернуться

193

Отличное объяснение см.: Ernest Nagel and James R. Newman, Godel’s Proof (New York: New York University Press, 1958), а также в классике широкого диапазона, которую вдохновила эта книга, напр.: Douglas Hofstadter, Godel, Escher, Bach: An Eternal Golden Braid (New York: Vintage Books, 1979).