Черные дыры — одно из явлений, предсказанных общей теорией относительности. Их характерная особенность заключается в их черноте (для физиков это означает, что никакой свет или иное излучение не могут из них вырваться). В 1974 году Стивен Хокинг сказал: р-р-р-р, неправильный ответ! С учетом законов квантовой механики приходится заключить, что черные дыры — не вполне черные. А все оттого, что, по принципу неопределенности, пустое пространство не вполне пусто: оно заполнено па́рами частица — античастица, которые существуют лишь краткий миг, после чего самоуничтожаются в ничто. Согласно очень хитроумным вычислениям Хокинга, когда это происходит совсем рядом с черной дырой, та может всосать одного члена пары, а второго выкинуть в космос — и вот их-то можно наблюдать как излучение. Значит, черные дыры светятся. Это к тому же означает, что в них ненулевая температура, в точности так же, как свет от углей указывает на некоторое количество тепла. К сожалению, температура типичной черной дыры — меньше одной миллионной градуса, а это слишком мало, чтобы засекли астрономы. Но физиков понимание того, что у черных дыр есть хоть какая-то температура, привело к изумительному выводу. Если у черных дыр есть температура, в них есть кое-что под названием энтропия — более того, этой самой энтропии в них будет уйма: если записать ее численно, она займет больше одной строки в этой книге.
Энтропия — мера беспорядка системы. Если знать внутреннюю структуру системы, можно вычислить ее энтропию, подсчитав число возможных состояний, в которых она может находиться; чем их больше, тем выше энтропия. Например, если у Алексея в комнате беспорядок, у нее есть множество возможных состояний, в которых она может пребывать: тут — хомячки, там — гора грязной одежды, еще где-нибудь — старые комиксы, а также все эти объекты могут быть перемешаны, и тогда «состояние» у системы будет иное. Чем больше у него в комнате всякого барахла, тем больше возможных состояний (в отличие от распространенного убеждения, состояние высокой энтропии не имеет ничего общего с аккуратным или каким ни попадя размещением объектов внутри системы, а лишь с возможным числом этих размещений). Но если бы в его комнате было пусто, она могла бы находиться лишь в одном состоянии, поскольку ничто в ней нельзя поменять местами, и энтропия при этом равнялась бы нулю. До Хокинга черные дыры воспринимались как лишенные внутренней структуры, т. е. чем-то вроде пустой комнаты. Но теперь они скорее похожи на комнату Алексея. Если бы Хокинг спросил, я бы подтвердил: я всегда говорил, что комната Алексея — это черная дыра.
Физики лет двадцать ломали голову над результатами Хокинга. Сочетать отдельные теории относительности и квантовые теории — дело хитрое. Где же они, эти самые состояния внутри черной дыры, на которые указывает энтропия? Никто не понимал. И вот в 1996 году Эндрю Строминджер и Кумрун Вафа опубликовали шикарный расчет: применив соображения М-теории, они продемонстрировали, что можно создать (теоретически) черные дыры некоторых разновидностей из бран; для этих черных дыр разные состояния — это состояния бран, и их можно посчитать. Энтропия, вычисленная ими этим методом, согласовалась с предсказательными расчетами Хокинга, которые он получил совсем иным способом.
Этот результат стал поразительным свидетельством того, что М-теория делает что-то правильно, и все же остался лишь еще одним постсказанием. Теории же нужно, как настоятельно напоминают нам эти зануды-эксперименталисты, хоть какое-то опытное подтверждение из реального мира. Надежда на экспериментальное свидетельство М-теории жива — по двум причинам. Первая — возможное открытие в следующем десятилетии суперсимметричных частиц. Это может произойти в Большом адронном коллайдере[324] в женевском ЦЕРНе. Вторая проверка на реальность — поиск отклонений от закона тяготения[325]. Согласно Ньютону, а на этом уровне — также и Эйнштейну, два объекта лабораторных размеров должны притягиваться друг к другу с силой, пропорциональной обратному квадрату расстояния между ними. На половине дороги между ними их взаимное притяжение возрастает вчетверо. Однако, в зависимости от природы дополнительных измерений, в рамках М-теории допустимо, что при очень тесном сближении объектов сила их взаимного притяжения будет увеличиваться гораздо быстрее. И хотя физики проверили действие других сил вплоть до масштабов 10-17 см, поведение гравитационной силы пока изучено лишь до расстояний, больших 1 см. Исследователи из Стэнфордского университета и Колорадского университета, Боулдере, сейчас ставят эксперименты с гравитацией на малых расстояниях с применением «десктопных» технологий.
324
«Discovering New Dimensions at LHC»,
325
P. Weiss, «Hunting for Higher Dimensions»,