Выбрать главу

В лаборатории академика А. И. Опарина исследуются коацерватные капли (капли, выделяющиеся из раствора белковоподобных веществ) как модели многомолекулярных комплексных систем, которые возникли в первичном растворе органического вещества и явились исходными образованиями на пути возникновения первичных организмов.

В этой лаборатории получены такие капли, которые воспроизводят элементарный обмен веществ с окружающей средой. Эти искусственные образования могут в процессе развития совершенствовать свою организацию. Основой такой эволюции, как это недавно было показано экспериментально, является предбиологический естественный отбор – процесс, при котором более совершенные капли быстрее отбирают нужные им для роста вещества, нежели капли, хуже организованные. В результате «сильные» образования совершенствуются за счет «слабых», которые постепенно распадаются и исчезают.

Интересны работы, посвященные эволюции макромолекул белков и нуклеиновых кислот. Как считает советский ученый М. Волькенштейн, они успешно согласуются с общими идеями о возникновении жизни из неживой природы, впервые последовательно сформулированными академиком А. И. Опариным.

...В 1971 году известный физико-химик М. Эйген (ФРГ) построил модельную теорию эволюции макромолекул. Особый интерес теория Эйгена представляет постольку, поскольку она охватывает добиологическую эволюцию – ведь говорить о живых молекулах бессмысленно: ни белок, ни ДНК сами по себе не живут и в этом смысле не отличаются от синтетических полимеров. Необходимое условие жизни – наличие различных веществ, способных взаимодействовать друг с другом (более подробно с этими проблемами читатель может познакомиться в работах члена-корреспондента АН СССР М. Волькенштейна, в которых автор популяризирует теорию Эйгена). Эйген анализирует, как пишет М. Волькенштейн, мысленное устройство, модель: ящик с полупроницаемыми стенками. Через такие стенки могут пройти активированные мономеры. Полимерные же молекулы сквозь стены не проникают.

Внутри ящика происходит полимеризация мономеров. Идет там и противоположный процесс – распад полимерных цепей. Кроме того, цепь может служить как бы матрицей для сборки собственных копий из свободных мономеров (репликации). При сборке копий возможны ошибки.

При условии, если обеспечено постоянство концентраций мономерных единиц и суммы всех полимерных цепей, в системе начнутся естественный отбор и эволюция.

В ходе работы Эйген анализировал особую величину – «селекционную ценность» цепей. Ее значение определяется соотношением скоростей репликации и распада с учетом наличия мутаций.

Таким образом, физико-химическое толкование эволюции и отбора на уровне макромолекул базируется на анализе скоростей реакций полимеризации и распада.

Как видим, фактор времени оказывает влияние даже на такие образования, которые находятся на предбиологическом уровне существования живого. С совершенствованием биологической структуры организмов фактор времени приобретает едва ли не решающее значение в их эволюции.

Пока что разговор о временных связях имел весьма общий характер. Если же посмотреть на дело более конкретно, то можно увидеть различия разительные. Скажем, действие относительно постоянных факторов отличается от действия повторяющихся внешних воздействий. Периодическое или непериодическое воздействие относительно постоянных внешних факторов при активном передвижении живых существ отличается от действия никогда не повторяющихся факторов.

В чем же особенность каждой из этих форм? Для простоты объяснения начнем с последней.

Символически такие воздействия можно обозначить «1», «2», «3» .... При этом под каждым числом понимается явление, никогда не повторяющееся в жизни организма.

Если от уникальных явлений перейти к повторяющимся последовательным событиям, то их можно символически выразить, например, как «1–2–3–4», «1–2–3–4»... Здесь под каждой цифрой понимается повторяемость компонентов в одном и том же порядке. Это могут быть смена утра, дня, вечера и ночи.

Мы можем иметь дело также с последовательными, но не периодическими явлениями (например, туча, молния, гром, обозначенные комплексом чисел «5–6–7»). В этом случае запись воздействия периодических и непериодических явлений может выглядеть так: «1(5–6–7)2–3–4», «1–2–3–4», «1–2–3–4»... Тем самым символически мы обозначили место грозы в ряду смены времени суток.