Другая группа соединений — нуклеиновые кислоты. Это сравнительно просто устроенные биополимеры. Структурная единица полимерной цепи нуклеиновой кислоты — нуклеотид — соединение азотистого основания, сахара и остатка фосфорной кислоты (рис. 30). Различают два основных класса нуклеиновых кислот: дезоксирибонуклеиновая кислота (ДНК) и рибонуклеиновая кислота (РНК), ДНК имеется у всех организмов; лишь у некоторых растительных вирусов ее функции выполняет РНК.
Рис. 27. Аденозинтрифосфат (АТФ) — аккумулятор энергии в клетках животных и растений
АТФ образуется в митохондриях (1) и в хлоропластах (2), обеспечивает энергией мышечное сокращение (3), синтез белка (4), движение веществ против градиента осмотического давления (5), передачу нервных импульсов (6). Образующийся при этом «разряженный» аденозиндифосфат (АДФ) вновь «заряжается» за счет солнечной энергии или энергии, заключенной в пище
Рис. 28. Интенсивный синтез АТФ происходит в митохондриях — органоидах клетки, похожих на наполненный жидкостью сосуд с заходящими внутрь стенками. Стенка митохондрии состоит из двойной мембраны: складки внутренней мембраны заходят внутрь сосуда, образуя кристы (1)
Рис. 29. Вторичная структура белка напоминает винтовую лестницу, в которой «ступенями» служат остатки аминокислот; спираль стабилизирована водородными связями (горизонтальные черточки)
Рис. 30. Строение нити нуклеиновой кислоты
Остаток фосфорной (Ф) кислоты, сахар (С), азотистые основания: А — аденин, Г — гуанин, Ц — цитозин
ДНК состоит из цепи чередующихся остатков фосфорной кислоты и сахара дизоксирибозы. К сахару присоединены в разной последовательности по одному из четырех азотистых оснований — два пурина (аденин и гуанин) и два пиримидина (тимин и цитозин). Молекулярный вес ДНК достигает 107, т. е. превосходит молекулярный вес белковых молекул.
Молекула РНК состоит из остатков фосфорной кислоты, чередующихся с сахаром рибозой. К каждому сахару присоединено по одному азотистому основанию: аденин, гуанин (пурины) или урацил, цитозин (пиримидины). Молекулярный вес РНК 6·105—106. Следовательно, ДНК и РНК различаются по составу сахаров (дезоксирибоза или рибоза) и одному пиримидину (тимин или урацил).
Нуклеиновые кислоты давно привлекали внимание исследователей как составная часть хромосом. Однако долгое время считалось, что они представляют собой скорее футляр, защищающий белковую основу хромосомы от деструктивных воздействий со стороны окружающих хромосому веществ, чем аппарат, обеспечивающий воспроизведение белка. Перелом в воззрениях произошел в 1944 г. после того, как американские исследователи О. Эвери, С. Маклеод и М. Маккарти наблюдали трансформацию одного наследственного типа возбудителей пневмонии — пневмококка — в другой наследственный тип под влиянием препарата ДНК, выделенного из второго типа. Было обнаружено, что ДНК обладает свойством передавать наследственные особенности от одних клеток другим.
Развитие техники электронной микроскопии позволило получить новые замечательные факты. Оказалось, что частицы фага, заражая бактерии, вводят в них только нуклеиновую кислоту; белковая оболочка бактериофага остается вне бактерии и в размножении частиц фага роли не играет. Нуклеиновая кислота фага перестраивает весь метаболизм бактериальной клетки, превращая его в механизм репродукции новых частиц фага. Эти факты, а также многие другие, аналогичные им, показывают, что высокополимеризованные нуклеиновые кислоты обладают способностью навязывать клетке специфический ход синтетических процессов.
Все большее подтверждение получает гипотеза, согласно которой нуклеиновые кислоты — вещества, в которых посредством чередования четырех азотистых оснований записана основная программа биосинтезов. Особая роль принадлежит ДНК, первоначально обнаруженной в хромосомах высших организмов.
Если проследить за изменением сложности ДНК в ряду, начинающемся с вирусов и оканчивающемся человеком, выявляются весьма интересные закономерности. По расчетам Дж. Дрейка (1969) один из самых мелких бактериофагов — фаг лямбда — имеет 4,8·104 пар нуклеотидов; у несколько более сложного бактериофага Т-4 их число уже 1,8·105; бактерия кишечной палочки имеет 4,5·106 пар нуклеотидов; плесневый грибок невроспора — 4,5·107; мушка дрозофила — 2,0·108; человек — 2,0·109. Длина всех цепочек ДНК из одной клетки человека около 3 м.