Выбрать главу

В 1953 г. английские ученые Д. Уотсон и Ф. Крик, изучив строение ДНК с помощью рентгеноструктурного анализа, показали, что это вещество встречается в виде двух спаренных нитей, закрученных в форме спирали (рис. 31). Нити соединены между собой водородными связями, связывающими попарно каждый пурин одной цепи с пиримидином другой. Аденин всегда связан с тимином, а гуанин с цитозином, поэтому сумма пуринов ДНК равна сумме пиримидинов. Спираль Уотсона и Крика закручена вправо. Это зависит от свойств дезоксирибозы, имеющей асимметрическую правую структуру.

В соответствии с современными представлениями воспроизведение (репликация) ДНК осуществляется следующим образом. Витки спирали ДНК расходятся, каждый пурин притягивает из среды нуклеотид с парным к данному пурину пиримидином, каждый пиримидин притягивает соответствующий пурин. Затем присоединенные нуклеотиды объединяются в дочернюю цепь, комплементарную по отношению к материнской (т. е. в которой на месте пуринов материнской цепи стоят парные с ними пиримидины, а на месте пиримидинов — парные пурины). Процесс осуществляется с помощью особого фермента ДНК — полимеразы. Так как другая материнская нить также реплицирует комплементарную дочернюю, то в итоге образуются две дочерние нити, тождественные с материнскими. Специфическое чередование азотистых соединений, в которых закодирована специфика биосинтезов, при этом сохраняется (рис. 32).

ДНК имеет две основные функции:

сохранение и передача по наследству генетической информации, т. е. функцию филогенетической памяти, осуществляемую посредством репликации дочерних нитей;

придание специфичности синтезу клеточных белков с помощью процессов, получивших название транскрипции и трансляции.

Наиболее интересна роль ДНК как кода, определяющего специфику белковых синтезов. Мысль о том, что в структуре ДНК закодирован способ синтеза белков, первоначально была высказана в 1954 г. американским физиком Г. Гамовым. Белки построены из 20 аминокислот; ДНК содержит четыре азотистых основания. Каждой аминокислоте отвечает определенное сочетание азотистых оснований. По-видимому, каждой аминокислоте не может соответствовать сочетание из двух азотистых оснований. Число возможных сочетаний из четырех по два в этом случае составило бы всего 16, т. е. меньше количества основных аминокислот. Минимальное число сочетаний — три из четырех, т. е. триплет. Число возможных комбинаций (64) значительно превышает число аминокислот.

Рис. 31. Схема строения ДНК из двух спирально закрученных полинуклеотидов (по Уотсону и Крику)

Спирально закрученные ленты — скелет молекулы, состоящей из остатков фосфорной кислоты (Ф) и сахара дезоксирибозы (С); перекладины между лентами — пары азотистых оснований, связанных водородными связями; A, T, Г, Ц — азотистые основания. Вертикальный стержень — ось симметрии

Рис. 32. Схема превращений ДНК

а — синтез дочерних нитей ДНК (2) на основе материнских нитей (1) при посредстве фермента ДНК — полимеразы (3); б — образование комплементарных нитей ДНК путем присоединения нуклеотидов, дополнительных к паре нуклеотидов (репликация)

В 1961 г. американским биохимикам М. Ниренбергу и Дж. Маттеи, работавшим с синтетическими полинуклеотидами известного строения, удалось не только подтвердить эту гипотезу, но и выяснить, каким триплетам азотистых оснований соответствуют те или иные аминокислоты. Оказалось, что триплету из трех урацилов отвечает аминокислота фенилаланин. В последних работах Ниренберга и других исследователей выяснен триплетный код всех 20 аминокислот. Это очень важное открытие, блестяще подтверждающее гипотезу роли ДНК в белковых синтезах.

В дальнейших исследованиях выявилась еще более интересная закономерность. Обнаружилось, что все организмы от бактерий и синезеленых водорослей, с одной стороны, до млекопитающих и высших цветковых растений — с другой, пользуются одним и тем же нуклеотидным кодом. Единство жизненного субстрата всех населяющих Землю организмов стало очевидным фактом.

Превращение закодированной в ДНК информации в совокупность биохимических процессов осуществляется с помощью другого класса нуклеиновых кислот — РНК. В противоположность ДНК, количество которой в клетке отличается замечательным постоянством, содержание РНК сильно варьирует в зависимости от характера клеточного обмена, особенностей питания и т. п. Различают, по крайней мере, три класса РНК. Высокомолекулярная РНК составляет около 90% всей РНК клетки. Она локализована в рибосомах клетки — месте синтеза клеточных белков — и составляет до 60% тела рибосомы. Информационная РНК (иРНК), синтезируемая в ядре клетки при участии ДНК, повторяет в своей структуре последовательность азотистых оснований ДНК, т. е. происходит своеобразное переписывание структуры ДНК — транскрипция (рис. 33). Поступая из ядра в рибосомы, иРНК передает в эти фабрики белка информацию о характере синтезов. Содержание иРНК в клетке невелико — 1—2% клеточной РНК. Последний тип РНК — растворимая, или транспортная, РНК (тРНК). Это — сравнительно низкомолекулярная нуклеиновая кислота (молекулярный вес около 25 000). Ее роль — присоединение и перенос отдельных аминокислот к месту синтеза белка в рибосомах.