Путь к объяснению движения вдоль прямой был весьма прост: внешняя сила вызывает изменение скорости; вектор силы имеет то же направление, что и изменение скорости. Но что теперь следует выбрать в качестве путеводной нити в случае криволинейного движения? Совершенно то же самое! Единственное различие в том, что изменение скорости понимается теперь в более общем смысле, чем раньше. Достаточно взглянуть на пунктирные векторы (см. рис. 11 и 12), чтобы все стало ясно. Если скорость известна для всех точек кривой, то направление силы в любой точке может быть найдено сразу же. Нужно нарисовать векторы скорости для двух моментов, отделенных очень короткими интервалами времени, а стало быть, соответствующих положениям, очень близким друг к другу. Вектор, проведенный из конца первого вектора к концу второго, показывает направление действующей силы. Но существенно, что оба вектора скорости должны быть отделены лишь «очень коротким» интервалом времени. Строгий анализ таких слов, как «очень близкий», «очень короткий», далеко не прост. Именно этот анализ привел Ньютона и Лейбница к открытию дифференциального исчисления.
Путь, который привел к обобщению идеи Галилея, длинен и извилист. Мы не можем показать здесь, сколь изобильными и плодотворными оказались последствия этого обобщения. Его применение приводит к простому и удобному объяснению многих явлений, которые считались несвязанными друг с другом и истолковывались неправильно. Из всего разнообразия движений мы возьмем лишь самое простое и применим к его объяснению только что сформулированные законы.
Пуля, выпущенная из ружья, камень, брошенный под углом к горизонту, струя воды, выходящая из трубы, — все они описывают хорошо известную траекторию одного и того же типа — параболу. Вообразим себе, например, что к камню прикреплен спидометр, так что вектор скорости камня может быть определен для любого момента. Результат представлен на рис. 13. Направление действующей на камень силы совершенно такое же, как и направление изменения скорости; мы уже видели, как его можно определить.
Рис. 13
Рис. 14 показывает, что сила вертикальна и направлена вниз.
Рис. 14
Совершенно то же самое мы видим, рассматривая движение камня, брошенного с вершины башни. Пути, а также и скорости, совершенно различны, но изменения скоростей имеют одинаковое направление — к центру Земли.
Камень, привязанный к веревке и вращающийся в горизонтальной плоскости, движется по окружности. Все векторы на диаграмме, представляющей это движение, имеют одинаковую длину, если величина скорости постоянна (рис. 15). Тем не менее вектор скорости непрерывно меняется, так как траектория не прямолинейна. Только в случае равномерного прямолинейного движения не действуют никакие силы. Здесь же сила налицо, и скорость изменяется, но не по величине, а по направлению. Согласно закону движения, должна существовать некоторая сила, вызывающая это изменение; в данном случае сила действует между камнем и рукой, держащей веревку.
Рис. 15
Сразу же возникают дальнейшие вопросы: в каком направлении действует сила? Опять векторная диаграмма дает ответ. На рис. 16 даны векторы скоростей для двух очень близких точек и найдено ускорение. Видно, что вектор ускорения должен быть направлен вдоль веревки к центру окружности и всегда перпендикулярен вектору скорости или касательной. Другими словами, рука через веревку воздействует с некоторой силой на камень.
Рис. 16
Совершенно аналогичен и более важный пример — обращение Луны вокруг Земли. Обращение Луны можно считать приблизительно равномерным круговым движением. Сила, действующая на Луну, направлена к Земле, по тем же причинам, по которым в предыдущем примере она была направлена к руке. Никакой веревки, связывающей Луну и Землю, нет, но мы можем представить себе линию между центрами обоих тел; сила направлена по этой линии к центру Земли, как и сила, действующая на камень, подброшенный над землей или падающий с башни.
Все, что мы сказали о движении, можно суммировать в одном предложении:
Сила и изменение скорости суть векторы, имеющие одно и то же направление.
Это чрезвычайно важная исходная идея, но она недостаточна для полного объяснения всех наблюдаемых движений. Переход от Аристотелева образа мышления к Галилееву положил самый важный краеугольный камень в обоснование науки. Прорыв был сделан, линия дальнейшего развития стала ясна. Нас во всем этом интересует первый этап развития; интересно следовать за первыми шагами, показать, как рождаются новые физические понятия в жестокой борьбе со старыми идеями. Мы касались только новаторских работ в науке, состоящих в нахождении новых и неожиданных путей развития; мы касались только прогресса в научной мысли, создающей вечно изменяющуюся картину мира. Начальные и основополагающие шаги всегда имеют революционный характер. Научное воображение находит старые понятия слишком ограниченными и заменяет их новыми. Развитие, продолжающееся по какой-либо уже принятой линии, эволюционно до тех пор, пока не достигается следующий поворотный пункт, где должно быть завоевано новое поле исследования. Но чтобы понять, какие основания и какие трудности вызывают изменение основных понятий, мы должны знать не только исходные руководящие идеи, но и выводы, которые могут быть из них сделаны.